-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
133 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
# pylint: disable=missing-function-docstring | ||
|
||
import itertools | ||
from typing import Dict, Tuple | ||
|
||
import torch | ||
from torch import Tensor | ||
|
||
from cirkit.new import set_layer_comp_space | ||
from cirkit.new.layers import CategoricalLayer, CPLayer | ||
from cirkit.new.model import TensorizedCircuit | ||
from cirkit.new.region_graph import QuadTree | ||
from cirkit.new.reparams import LeafReparam, LogSoftmaxReparam | ||
from cirkit.new.symbolic import SymbolicTensorizedCircuit | ||
from tests import floats | ||
|
||
|
||
def _get_circuit_2x2() -> TensorizedCircuit: | ||
rg = QuadTree((2, 2), struct_decomp=False) | ||
symbc = SymbolicTensorizedCircuit( | ||
rg, | ||
num_input_units=1, | ||
num_sum_units=1, | ||
input_layer_cls=CategoricalLayer, | ||
input_layer_kwargs={"num_categories": 2}, # type: ignore[misc] | ||
input_reparam=LogSoftmaxReparam, | ||
sum_layer_cls=CPLayer, | ||
sum_layer_kwargs={}, # type: ignore[misc] | ||
sum_reparam=LeafReparam, | ||
prod_layer_cls=CPLayer, | ||
prod_layer_kwargs={}, # type: ignore[misc] | ||
) | ||
return TensorizedCircuit(symbc, num_channels=1) | ||
|
||
|
||
def _get_circuit_2x2_param_shapes() -> Dict[str, Tuple[int, ...]]: | ||
return { | ||
"layers.0.params.reparams.0.param": (1, 1, 1, 2), # Input for {0}. | ||
"layers.1.params.param": (1, 1), # Dense after above. | ||
# TODO: should we have two Dense for {0,1} and {0,2}? | ||
"layers.2.params.reparams.0.param": (1, 1, 1, 2), # Input for {1}. | ||
"layers.3.params.param": (1, 1), # Dense after above. | ||
"layers.4.params.reparams.0.param": (1, 1, 1, 2), # Input for {2}. | ||
"layers.5.params.param": (1, 1), # Dense after above. | ||
"layers.6.params.reparams.0.param": (1, 1, 1, 2), # Input for {3}. | ||
"layers.7.params.param": (1, 1), # Dense after above. | ||
"layers.8.sum.params.param": (1, 1), # CP of {0, 1}. | ||
"layers.9.sum.params.param": (1, 1), # CP of {0, 2}. | ||
"layers.10.sum.params.param": (1, 1), # CP of {1, 3}. | ||
"layers.11.sum.params.param": (1, 1), # CP of {2, 3}. | ||
"layers.12.sum.params.param": (1, 1), # CP of {0, 1 + 2, 3}. | ||
"layers.13.sum.params.param": (1, 1), # CP of {0, 2 + 1, 3}. | ||
"layers.14.params.param": (1, 2), # Mixing of {0, 1, 2, 3}. | ||
} | ||
|
||
|
||
def _set_circuit_2x2_params(circuit: TensorizedCircuit) -> None: | ||
state_dict = circuit.state_dict() # type: ignore[misc] | ||
state_dict.update( # type: ignore[misc] | ||
{ # type: ignore[misc] | ||
"layers.0.params.reparams.0.param": ( # Input for {0}. | ||
torch.tensor([1 / 2, 1 / 2]).log().view(1, 1, 1, 2) # type: ignore[misc] | ||
), | ||
"layers.1.params.param": torch.tensor(1 / 1).view(1, 1), # Dense after above. | ||
"layers.2.params.reparams.0.param": ( # Input for {1}. | ||
torch.tensor([1 / 4, 3 / 4]).log().view(1, 1, 1, 2) # type: ignore[misc] | ||
), | ||
"layers.3.params.param": torch.tensor(1 / 1).view(1, 1), # Dense after above. | ||
"layers.4.params.reparams.0.param": ( # Input for {2}. | ||
torch.tensor([1 / 2, 1 / 2]).log().view(1, 1, 1, 2) # type: ignore[misc] | ||
), | ||
"layers.5.params.param": torch.tensor(1 / 1).view(1, 1), # Dense after above. | ||
"layers.6.params.reparams.0.param": ( # Input for {3}. | ||
torch.tensor([3 / 4, 1 / 4]).log().view(1, 1, 1, 2) # type: ignore[misc] | ||
), | ||
"layers.7.params.param": torch.tensor(1 / 1).view(1, 1), # Dense after above. | ||
"layers.8.sum.params.param": torch.tensor(2 / 1).view(1, 1), # CP of {0, 1}. | ||
"layers.9.sum.params.param": torch.tensor(2 / 1).view(1, 1), # CP of {0, 2}. | ||
"layers.10.sum.params.param": torch.tensor(1 / 2).view(1, 1), # CP of {1, 3}. | ||
"layers.11.sum.params.param": torch.tensor(1 / 2).view(1, 1), # CP of {2, 3}. | ||
"layers.12.sum.params.param": torch.tensor(1 / 1).view(1, 1), # CP of {0, 1 + 2, 3}. | ||
"layers.13.sum.params.param": torch.tensor(1 / 1).view(1, 1), # CP of {0, 2 + 1, 3}. | ||
"layers.14.params.param": ( # Mixing of {0, 1, 2, 3}. | ||
torch.tensor([1 / 3, 2 / 3]).view(1, 2) # type: ignore[misc] | ||
), | ||
} | ||
) | ||
circuit.load_state_dict(state_dict) # type: ignore[misc] | ||
|
||
|
||
def _get_circuit_2x2_output() -> Tensor: | ||
a = torch.tensor([1 / 2, 1 / 2]).reshape(2, 1, 1, 1) # type: ignore[misc] | ||
b = torch.tensor([1 / 4, 3 / 4]).reshape(1, 2, 1, 1) # type: ignore[misc] | ||
c = torch.tensor([1 / 2, 1 / 2]).reshape(1, 1, 2, 1) # type: ignore[misc] | ||
d = torch.tensor([3 / 4, 1 / 4]).reshape(1, 1, 1, 2) # type: ignore[misc] | ||
return (a * b * c * d).reshape(-1, 1, 1) | ||
|
||
|
||
def test_circuit_instantiation() -> None: | ||
circuit = _get_circuit_2x2() | ||
param_shapes = {name: tuple(param.shape) for name, param in circuit.named_parameters()} | ||
assert circuit.num_vars == 4 | ||
assert param_shapes == _get_circuit_2x2_param_shapes() | ||
|
||
|
||
def test_circuit_output_linear() -> None: | ||
set_layer_comp_space("linear") | ||
circuit = _get_circuit_2x2() | ||
_set_circuit_2x2_params(circuit) | ||
all_inputs = torch.tensor( | ||
list(itertools.product([0, 1], repeat=4)) # type: ignore[misc] | ||
).unsqueeze( | ||
dim=-1 | ||
) # shape (B=16, D=2, C=1). | ||
output = circuit(all_inputs) | ||
assert output.shape == (16, 1, 1) # shape (B=16, num_out=1, num_cls=1) | ||
# TODO: this is currently not correct. how to fix??? | ||
assert floats.allclose(output, _get_circuit_2x2_output()) | ||
|
||
|
||
def test_circuit_output_log() -> None: | ||
set_layer_comp_space("log") | ||
circuit = _get_circuit_2x2() | ||
_set_circuit_2x2_params(circuit) | ||
all_inputs = torch.tensor( | ||
list(itertools.product([0, 1], repeat=4)) # type: ignore[misc] | ||
).unsqueeze( | ||
dim=-1 | ||
) # shape (B=16, D=2, C=1). | ||
output = circuit(all_inputs) | ||
assert output.shape == (16, 1, 1) # shape (B=16, num_out=1, num_cls=1) | ||
# TODO: this is currently not correct. how to fix??? | ||
assert floats.allclose(output, _get_circuit_2x2_output().log()) |