Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 9 additions & 1 deletion python/tvm/relax/frontend/torch/base_fx_graph_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -1083,7 +1083,15 @@ def _linear(self, node: fx.Node) -> relax.Var:
weight = args[1]
bias = args[2] if len(args) > 2 else None
return self.block_builder.emit(relax.op.linear(x, weight, bias, "float32"))


def _logsigmoid(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
neg_x = self.block_builder.emit(relax.op.negative(x))
exp_neg_x = self.block_builder.emit(relax.op.exp(neg_x))
add_one = self.block_builder.emit(relax.op.add(exp_neg_x, relax.const(1.0, dtype="float32")))
log_val = self.block_builder.emit(relax.op.log(add_one))
return self.block_builder.emit(relax.op.negative(log_val))

def _max_pool1d_impl(
self,
x: relax.Expr,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -354,6 +354,7 @@ def create_convert_map(
"log1p.default": self._log1p,
"logical_not.default": self._unary_op(relax.op.logical_not),
"log_softmax.int": self._log_softmax,
"logsigmoid.default": self._logsigmoid,
"neg.default": self._unary_op(relax.op.negative),
"pad.default": self._pad,
"pixel_shuffle.default": self._pixel_shuffle,
Expand Down
34 changes: 34 additions & 0 deletions tests/python/relax/test_frontend_from_exported_program.py
Original file line number Diff line number Diff line change
Expand Up @@ -734,6 +734,40 @@ def main(
verify_model(LogSoftmax2(), example_args, {}, expected1)


def test_logsigmoid():
class LogSigmoid(Module):
def __init__(self):
super().__init__()
self.ls = torch.nn.LogSigmoid()

def forward(self, input):
return self.ls(input)

class LogSigmoid2(Module):
def forward(self, input):
return torch.nn.functional.logsigmoid(input)

@tvm.script.ir_module
class expected_logsigmoid:
@R.function
def main(
input: R.Tensor((1, 3, 10, 10), dtype="float32")
) -> R.Tuple(R.Tensor((1, 3, 10, 10), dtype="float32")):
with R.dataflow():
neg_input = R.negative(input)
exp_neg = R.exp(neg_input)
add_one = R.add(exp_neg, R.const(1.0, "float32"))
log_val = R.log(add_one)
result = R.negative(log_val)
gv: R.Tuple(R.Tensor((1, 3, 10, 10), dtype="float32")) = (result,)
R.output(gv)
return gv

example_args = (torch.randn(1, 3, 10, 10, dtype=torch.float32),)
verify_model(LogSigmoid(), example_args, {}, expected_logsigmoid)
verify_model(LogSigmoid2(), example_args, {}, expected_logsigmoid)


def test_prelu():
class Prelu1(Module):
def __init__(self, num_parameters=1, alpha=0.25):
Expand Down