Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
91 changes: 91 additions & 0 deletions examples/singa_peft/examples/data/cifar10.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#

try:
import pickle
except ImportError:
import cPickle as pickle

import numpy as np
import os
import sys


def load_dataset(filepath):
with open(filepath, 'rb') as fd:
try:
cifar10 = pickle.load(fd, encoding='latin1')
except TypeError:
cifar10 = pickle.load(fd)
image = cifar10['data'].astype(dtype=np.uint8)
image = image.reshape((-1, 3, 32, 32))
label = np.asarray(cifar10['labels'], dtype=np.uint8)
label = label.reshape(label.size, 1)
return image, label


#def load_train_data(dir_path='/scratch1/07801/nusbin20/gordon-bell/cifar-10-batches-py', num_batches=5):
def load_train_data(dir_path='/scratch/snx3000/lyongbin/singa_my/cifar10_log/cifar-10-batches-py', num_batches=5):
labels = []
batchsize = 10000
images = np.empty((num_batches * batchsize, 3, 32, 32), dtype=np.uint8)
for did in range(1, num_batches + 1):
fname_train_data = dir_path + "/data_batch_{}".format(did)
image, label = load_dataset(check_dataset_exist(fname_train_data))
images[(did - 1) * batchsize:did * batchsize] = image
labels.extend(label)
images = np.array(images, dtype=np.float32)
labels = np.array(labels, dtype=np.int32)
return images, labels


#def load_test_data(dir_path='/scratch1/07801/nusbin20/gordon-bell/cifar-10-batches-py'):
def load_test_data(dir_path='/scratch/snx3000/lyongbin/singa_my/cifar10_log/cifar-10-batches-py'):
images, labels = load_dataset(check_dataset_exist(dir_path + "/test_batch"))
return np.array(images, dtype=np.float32), np.array(labels, dtype=np.int32)


def check_dataset_exist(dirpath):
if not os.path.exists(dirpath):
print(
'Please download the cifar10 dataset using python data/download_cifar10.py'
)
sys.exit(0)
return dirpath


def normalize(train_x, val_x):
mean = [0.4914, 0.4822, 0.4465]
std = [0.2023, 0.1994, 0.2010]
train_x /= 255
val_x /= 255
for ch in range(0, 2):
train_x[:, ch, :, :] -= mean[ch]
train_x[:, ch, :, :] /= std[ch]
val_x[:, ch, :, :] -= mean[ch]
val_x[:, ch, :, :] /= std[ch]
return train_x, val_x

def load(): # Need to pass in the path for loading training data
train_x, train_y = load_train_data()
val_x, val_y = load_test_data()
train_x, val_x = normalize(train_x, val_x)
train_y = train_y.flatten()
val_y = val_y.flatten()
return train_x, train_y, val_x, val_y
Loading