Skip to content

anzuu14/Vulnerability-Patch-Management-using-LLM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

2 Commits
Β 
Β 

Repository files navigation

Vulnerability Patch Management with LLM

An AI-powered system that automates vulnerability analysis and patch recommendations using Large Language Models (LLMs). Parses Nmap scan results, prioritizes risks, and generates actionable remediation steps.

πŸ“‚ Repository Structure

β”œβ”€β”€ app.py # Main FastAPI/Flask application (backend server) β”œβ”€β”€ model.py # LLM integration & vulnerability analysis logic β”œβ”€β”€ utils.py # Helper functions (Nmap XML parsing, etc.) β”œβ”€β”€ requirements.txt # Python dependencies β”œβ”€β”€ templates/ # HTML templates for web interface (if applicable) β”œβ”€β”€ pycache/ # Python cache directory (ignored in Git) └── .dist/ # Build/distribution files (optional)

text

πŸš€ Features

  • Automated Scan Analysis: Parse Nmap XML outputs to identify outdated services.
  • LLM-Powered Recommendations: GPT-4/Llama 3 suggests patches based on CVE databases.
  • Prioritization Dashboard: Ranks vulnerabilities by severity (Critical/High/Medium).
  • Self-Healing: Optional auto-remediation for low-risk patches (e.g., Ansible scripts).

βš™οΈ Setup

  1. Clone the repo: Install dependencies:

bash pip install -r requirements.txt Add your LLM API key in config.py (or environment variables).

πŸ–₯️ Usage python

Analyze Nmap scan

from utils import parse_nmap from model import get_patch_recommendations

scan_data = parse_nmap("scan_results.xml") recommendations = get_patch_recommendations(scan_data)

About

Automated vulnerability patching system using LLMs to analyze scan results and recommend fixes.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published