The OH + HBr -> H2O + Br PES UCCSD(T)/cc-pVDZ-F12a of A. G. S. de Oliveira-Filho, F. R. Ornellas, and J. M. Bowman.
In the h2obr_fit.f90
file there is a subroutine pot(xyz,v)
that returns the potential (v
in hartree) and a subroutine potder(xyz,dxyz)
returns the cartesian (numerical) gradient (dxyz(4,3)
in hartree/angstrom) for for the system with Cartesian coordinates (xyz(4,3)
in angstrom).
There is also a minimal working example in the test.f90 file.
Cartesian coordinates in angstrom
xyz(1,1)= x_H1
xyz(1,2)= y_H1
xyz(1,3)= z_H1
xyz(2,1)= x_H2
xyz(2,2)= y_H2
xyz(2,3)= z_H2
xyz(3,1)= x_O
xyz(3,2)= y_O
xyz(3,3)= z_O
xyz(4,1)= x_Br
xyz(4,2)= y_Br
xyz(4,3)= z_Br
pot(xyz,v)
returns the potential v
in hartree.
dxyz(4,3)
returns the cartesian numerical gradient in hartree/angstrom.
dxyz(1,1)= dvdx_H1
dxyz(1,2)= dvdy_H1
dxyz(1,3)= dvdz_H1
dxyz(2,1)= dvdx_H2
dxyz(2,2)= dvdy_H2
dxyz(2,3)= dvdz_H2
dxyz(3,1)= dvdx_O
dxyz(3,2)= dvdy_O
dxyz(3,3)= dvdz_O
dxyz(4,1)= dvdx_Br
dxyz(4,2)= dvdy_Br
dxyz(4,3)= dvdz_Br
Before any actual potential energy calculations are made, a single
call to prepot must be made:
`call prepot`
Later, the potential energy is computed by calling pot:
`call pot(xyz,v)`
and the gradient is computed by calling porter:
`call potder(xyz,dxyz)`
- A. G. S. de Oliveira-Filho, F. R. Ornellas, J. M. Bowman, Quasiclassical trajectory calculations of the rate constant of the OH + HBr → Br + H2O reaction using a full-dimensional ab initio potential energy surface over the temperature range 5 to 500 K. J. Phys. Chem. Lett. 5, 706–712 (2014). (https://doi.org/10.1021/jz5000325)
- A. G. S. de Oliveira-Filho, F. R. Ornellas, J. M. Bowman, Energy disposal and thermal rate constants for the OH + HBr and OH + DBr reactions: quasiclassical trajectory calculations on an accurate potential energy surface. J. Phys. Chem. A 118, 12080–12088 (2014). (https://doi.org/10.1021/jp509430p)