forked from GrapheneOS/linux-hardened
-
Notifications
You must be signed in to change notification settings - Fork 55
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
log the access to SUID #33
Open
theLOICofFRANCE
wants to merge
104
commits into
anthraxx:master
Choose a base branch
from
theLOICofFRANCE:log-SUID
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Signed-off-by: Daniel Micay <[email protected]>
Signed-off-by: Daniel Micay <[email protected]>
Signed-off-by: Daniel Micay <[email protected]>
Signed-off-by: Daniel Micay <[email protected]>
Signed-off-by: Daniel Micay <[email protected]>
Signed-off-by: Daniel Micay <[email protected]>
Signed-off-by: Daniel Micay <[email protected]>
Signed-off-by: Daniel Micay <[email protected]>
Signed-off-by: Daniel Micay <[email protected]>
It can make sense to disable this to reduce attack surface / complexity.
Signed-off-by: Daniel Micay <[email protected]>
Signed-off-by: Daniel Micay <[email protected]>
Signed-off-by: Daniel Micay <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Apr 30, 2022
commit 23c2d49 upstream. The kmemleak_*_phys() apis do not check the address for lowmem's min boundary, while the caller may pass an address below lowmem, which will trigger an oops: # echo scan > /sys/kernel/debug/kmemleak Unable to handle kernel paging request at virtual address ff5fffffffe00000 Oops [#1] Modules linked in: CPU: 2 PID: 134 Comm: bash Not tainted 5.18.0-rc1-next-20220407 #33 Hardware name: riscv-virtio,qemu (DT) epc : scan_block+0x74/0x15c ra : scan_block+0x72/0x15c epc : ffffffff801e5806 ra : ffffffff801e5804 sp : ff200000104abc30 gp : ffffffff815cd4e8 tp : ff60000004cfa340 t0 : 0000000000000200 t1 : 00aaaaaac23954cc t2 : 00000000000003ff s0 : ff200000104abc90 s1 : ffffffff81b0ff28 a0 : 0000000000000000 a1 : ff5fffffffe01000 a2 : ffffffff81b0ff28 a3 : 0000000000000002 a4 : 0000000000000001 a5 : 0000000000000000 a6 : ff200000104abd7c a7 : 0000000000000005 s2 : ff5fffffffe00ff9 s3 : ffffffff815cd998 s4 : ffffffff815d0e90 s5 : ffffffff81b0ff28 s6 : 0000000000000020 s7 : ffffffff815d0eb0 s8 : ffffffffffffffff s9 : ff5fffffffe00000 s10: ff5fffffffe01000 s11: 0000000000000022 t3 : 00ffffffaa17db4c t4 : 000000000000000f t5 : 0000000000000001 t6 : 0000000000000000 status: 0000000000000100 badaddr: ff5fffffffe00000 cause: 000000000000000d scan_gray_list+0x12e/0x1a6 kmemleak_scan+0x2aa/0x57e kmemleak_write+0x32a/0x40c full_proxy_write+0x56/0x82 vfs_write+0xa6/0x2a6 ksys_write+0x6c/0xe2 sys_write+0x22/0x2a ret_from_syscall+0x0/0x2 The callers may not quite know the actual address they pass(e.g. from devicetree). So the kmemleak_*_phys() apis should guarantee the address they finally use is in lowmem range, so check the address for lowmem's min boundary. Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: Patrick Wang <[email protected]> Acked-by: Catalin Marinas <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Jun 9, 2022
[ Upstream commit 4b9caaa ] Lockdep complains about the smu->message_lock mutex being used before it is initialized through the following call path: amdgpu_device_init() amdgpu_dpm_mode2_reset() smu_mode2_reset() smu_v12_0_mode2_reset() smu_cmn_send_smc_msg_with_param() Move the mutex_init() call to smu_early_init() to fix the mutex being used before it is initialized. This fixes the following lockdep splat: [ 3.867331] ------------[ cut here ]------------ [ 3.867335] fbcon: Taking over console [ 3.867338] DEBUG_LOCKS_WARN_ON(lock->magic != lock) [ 3.867340] WARNING: CPU: 14 PID: 491 at kernel/locking/mutex.c:579 __mutex_lock+0x44c/0x830 [ 3.867349] Modules linked in: amdgpu(+) crct10dif_pclmul drm_ttm_helper crc32_pclmul ttm crc32c_intel ghash_clmulni_intel hid_lg_g15 iommu_v2 sp5100_tco nvme gpu_sched drm_dp_helper nvme_core ccp wmi video hid_logitech_dj ip6_tables ip_tables ipmi_devintf ipmi_msghandler fuse i2c_dev [ 3.867363] CPU: 14 PID: 491 Comm: systemd-udevd Tainted: G I 5.18.0-rc5+ #33 [ 3.867366] Hardware name: Micro-Star International Co., Ltd. MS-7C95/B550M PRO-VDH WIFI (MS-7C95), BIOS 2.90 12/23/2021 [ 3.867369] RIP: 0010:__mutex_lock+0x44c/0x830 [ 3.867372] Code: ff 85 c0 0f 84 33 fc ff ff 8b 0d b7 50 25 01 85 c9 0f 85 25 fc ff ff 48 c7 c6 fb 41 82 99 48 c7 c7 6b 63 80 99 e8 88 2a f8 ff <0f> 0b e9 0b fc ff ff f6 83 b9 0c 00 00 01 0f 85 64 ff ff ff 4c 89 [ 3.867377] RSP: 0018:ffffaef8c0fc79f0 EFLAGS: 00010286 [ 3.867380] RAX: 0000000000000028 RBX: 0000000000000000 RCX: 0000000000000027 [ 3.867382] RDX: ffff9ccc0dda0928 RSI: 0000000000000001 RDI: ffff9ccc0dda0920 [ 3.867384] RBP: ffffaef8c0fc7a80 R08: 0000000000000000 R09: ffffaef8c0fc7820 [ 3.867386] R10: 0000000000000003 R11: ffff9ccc2a2fffe8 R12: 0000000000000002 [ 3.867388] R13: ffff9cc990808058 R14: 0000000000000000 R15: ffff9cc98bfc0000 [ 3.867390] FS: 00007fc4d830f580(0000) GS:ffff9ccc0dd80000(0000) knlGS:0000000000000000 [ 3.867394] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 3.867396] CR2: 0000560a77031410 CR3: 000000010f522000 CR4: 0000000000750ee0 [ 3.867398] PKRU: 55555554 [ 3.867399] Call Trace: [ 3.867401] <TASK> [ 3.867403] ? smu_cmn_send_smc_msg_with_param+0x98/0x240 [amdgpu] [ 3.867533] ? __mutex_lock+0x90/0x830 [ 3.867535] ? amdgpu_dpm_mode2_reset+0x37/0x60 [amdgpu] [ 3.867653] ? smu_cmn_send_smc_msg_with_param+0x98/0x240 [amdgpu] [ 3.867758] smu_cmn_send_smc_msg_with_param+0x98/0x240 [amdgpu] [ 3.867857] smu_mode2_reset+0x2b/0x50 [amdgpu] [ 3.867953] amdgpu_dpm_mode2_reset+0x46/0x60 [amdgpu] [ 3.868096] amdgpu_device_init.cold+0x1069/0x1e78 [amdgpu] [ 3.868219] ? _raw_spin_unlock_irqrestore+0x30/0x50 [ 3.868222] ? pci_conf1_read+0x9b/0xf0 [ 3.868226] amdgpu_driver_load_kms+0x15/0x110 [amdgpu] [ 3.868314] amdgpu_pci_probe+0x1a9/0x3c0 [amdgpu] [ 3.868398] local_pci_probe+0x41/0x80 [ 3.868401] pci_device_probe+0xab/0x200 [ 3.868404] really_probe+0x1a1/0x370 [ 3.868407] __driver_probe_device+0xfc/0x170 [ 3.868410] driver_probe_device+0x1f/0x90 [ 3.868412] __driver_attach+0xbf/0x1a0 [ 3.868414] ? __device_attach_driver+0xe0/0xe0 [ 3.868416] bus_for_each_dev+0x65/0x90 [ 3.868419] bus_add_driver+0x151/0x1f0 [ 3.868421] driver_register+0x89/0xd0 [ 3.868423] ? 0xffffffffc0bd4000 [ 3.868425] do_one_initcall+0x5d/0x300 [ 3.868428] ? do_init_module+0x22/0x240 [ 3.868431] ? rcu_read_lock_sched_held+0x3c/0x70 [ 3.868434] ? trace_kmalloc+0x30/0xe0 [ 3.868437] ? kmem_cache_alloc_trace+0x1e6/0x3a0 [ 3.868440] do_init_module+0x4a/0x240 [ 3.868442] __do_sys_finit_module+0x93/0xf0 [ 3.868446] do_syscall_64+0x5b/0x80 [ 3.868449] ? rcu_read_lock_sched_held+0x3c/0x70 [ 3.868451] ? lockdep_hardirqs_on_prepare+0xd9/0x180 [ 3.868454] ? do_syscall_64+0x67/0x80 [ 3.868456] ? do_syscall_64+0x67/0x80 [ 3.868458] ? do_syscall_64+0x67/0x80 [ 3.868460] ? do_syscall_64+0x67/0x80 [ 3.868462] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 3.868465] RIP: 0033:0x7fc4d8ec1ced [ 3.868467] Code: 5d c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d fb 70 0e 00 f7 d8 64 89 01 48 [ 3.868472] RSP: 002b:00007fff687ae6b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000139 [ 3.868475] RAX: ffffffffffffffda RBX: 0000560a76fbca60 RCX: 00007fc4d8ec1ced [ 3.868477] RDX: 0000000000000000 RSI: 00007fc4d902343c RDI: 0000000000000011 [ 3.868479] RBP: 00007fc4d902343c R08: 0000000000000000 R09: 0000560a76fb59c0 [ 3.868481] R10: 0000000000000011 R11: 0000000000000246 R12: 0000000000020000 [ 3.868484] R13: 0000560a76f8bfd0 R14: 0000000000000000 R15: 0000560a76fc2d10 [ 3.868487] </TASK> [ 3.868489] irq event stamp: 120617 [ 3.868490] hardirqs last enabled at (120617): [<ffffffff9817169e>] __up_console_sem+0x5e/0x70 [ 3.868494] hardirqs last disabled at (120616): [<ffffffff98171683>] __up_console_sem+0x43/0x70 [ 3.868497] softirqs last enabled at (119684): [<ffffffff980ee83a>] __irq_exit_rcu+0xca/0x100 [ 3.868501] softirqs last disabled at (119679): [<ffffffff980ee83a>] __irq_exit_rcu+0xca/0x100 [ 3.868504] ---[ end trace 0000000000000000 ]--- Signed-off-by: Hans de Goede <[email protected]> Signed-off-by: Alex Deucher <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Oct 25, 2022
…ller [ Upstream commit 9d2ce78 ] Naveen reported recursive locking of direct_mutex with sample ftrace-direct-modify.ko: [ 74.762406] WARNING: possible recursive locking detected [ 74.762887] 6.0.0-rc6+ #33 Not tainted [ 74.763216] -------------------------------------------- [ 74.763672] event-sample-fn/1084 is trying to acquire lock: [ 74.764152] ffffffff86c9d6b0 (direct_mutex){+.+.}-{3:3}, at: \ register_ftrace_function+0x1f/0x180 [ 74.764922] [ 74.764922] but task is already holding lock: [ 74.765421] ffffffff86c9d6b0 (direct_mutex){+.+.}-{3:3}, at: \ modify_ftrace_direct+0x34/0x1f0 [ 74.766142] [ 74.766142] other info that might help us debug this: [ 74.766701] Possible unsafe locking scenario: [ 74.766701] [ 74.767216] CPU0 [ 74.767437] ---- [ 74.767656] lock(direct_mutex); [ 74.767952] lock(direct_mutex); [ 74.768245] [ 74.768245] *** DEADLOCK *** [ 74.768245] [ 74.768750] May be due to missing lock nesting notation [ 74.768750] [ 74.769332] 1 lock held by event-sample-fn/1084: [ 74.769731] #0: ffffffff86c9d6b0 (direct_mutex){+.+.}-{3:3}, at: \ modify_ftrace_direct+0x34/0x1f0 [ 74.770496] [ 74.770496] stack backtrace: [ 74.770884] CPU: 4 PID: 1084 Comm: event-sample-fn Not tainted ... [ 74.771498] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), ... [ 74.772474] Call Trace: [ 74.772696] <TASK> [ 74.772896] dump_stack_lvl+0x44/0x5b [ 74.773223] __lock_acquire.cold.74+0xac/0x2b7 [ 74.773616] lock_acquire+0xd2/0x310 [ 74.773936] ? register_ftrace_function+0x1f/0x180 [ 74.774357] ? lock_is_held_type+0xd8/0x130 [ 74.774744] ? my_tramp2+0x11/0x11 [ftrace_direct_modify] [ 74.775213] __mutex_lock+0x99/0x1010 [ 74.775536] ? register_ftrace_function+0x1f/0x180 [ 74.775954] ? slab_free_freelist_hook.isra.43+0x115/0x160 [ 74.776424] ? ftrace_set_hash+0x195/0x220 [ 74.776779] ? register_ftrace_function+0x1f/0x180 [ 74.777194] ? kfree+0x3e1/0x440 [ 74.777482] ? my_tramp2+0x11/0x11 [ftrace_direct_modify] [ 74.777941] ? __schedule+0xb40/0xb40 [ 74.778258] ? register_ftrace_function+0x1f/0x180 [ 74.778672] ? my_tramp1+0xf/0xf [ftrace_direct_modify] [ 74.779128] register_ftrace_function+0x1f/0x180 [ 74.779527] ? ftrace_set_filter_ip+0x33/0x70 [ 74.779910] ? __schedule+0xb40/0xb40 [ 74.780231] ? my_tramp1+0xf/0xf [ftrace_direct_modify] [ 74.780678] ? my_tramp2+0x11/0x11 [ftrace_direct_modify] [ 74.781147] ftrace_modify_direct_caller+0x5b/0x90 [ 74.781563] ? 0xffffffffa0201000 [ 74.781859] ? my_tramp1+0xf/0xf [ftrace_direct_modify] [ 74.782309] modify_ftrace_direct+0x1b2/0x1f0 [ 74.782690] ? __schedule+0xb40/0xb40 [ 74.783014] ? simple_thread+0x2a/0xb0 [ftrace_direct_modify] [ 74.783508] ? __schedule+0xb40/0xb40 [ 74.783832] ? my_tramp2+0x11/0x11 [ftrace_direct_modify] [ 74.784294] simple_thread+0x76/0xb0 [ftrace_direct_modify] [ 74.784766] kthread+0xf5/0x120 [ 74.785052] ? kthread_complete_and_exit+0x20/0x20 [ 74.785464] ret_from_fork+0x22/0x30 [ 74.785781] </TASK> Fix this by using register_ftrace_function_nolock in ftrace_modify_direct_caller. Link: https://lkml.kernel.org/r/[email protected] Fixes: 53cd885 ("ftrace: Allow IPMODIFY and DIRECT ops on the same function") Reported-and-tested-by: Naveen N. Rao <[email protected]> Signed-off-by: Song Liu <[email protected]> Signed-off-by: Steven Rostedt (Google) <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Dec 22, 2022
[ Upstream commit bcd7026 ] By keep sending L2CAP_CONF_REQ packets, chan->num_conf_rsp increases multiple times and eventually it will wrap around the maximum number (i.e., 255). This patch prevents this by adding a boundary check with L2CAP_MAX_CONF_RSP Btmon log: Bluetooth monitor ver 5.64 = Note: Linux version 6.1.0-rc2 (x86_64) 0.264594 = Note: Bluetooth subsystem version 2.22 0.264636 @ MGMT Open: btmon (privileged) version 1.22 {0x0001} 0.272191 = New Index: 00:00:00:00:00:00 (Primary,Virtual,hci0) [hci0] 13.877604 @ RAW Open: 9496 (privileged) version 2.22 {0x0002} 13.890741 = Open Index: 00:00:00:00:00:00 [hci0] 13.900426 (...) > ACL Data RX: Handle 200 flags 0x00 dlen 1033 #32 [hci0] 14.273106 invalid packet size (12 != 1033) 08 00 01 00 02 01 04 00 01 10 ff ff ............ > ACL Data RX: Handle 200 flags 0x00 dlen 1547 #33 [hci0] 14.273561 invalid packet size (14 != 1547) 0a 00 01 00 04 01 06 00 40 00 00 00 00 00 ........@..... > ACL Data RX: Handle 200 flags 0x00 dlen 2061 #34 [hci0] 14.274390 invalid packet size (16 != 2061) 0c 00 01 00 04 01 08 00 40 00 00 00 00 00 00 04 ........@....... > ACL Data RX: Handle 200 flags 0x00 dlen 2061 #35 [hci0] 14.274932 invalid packet size (16 != 2061) 0c 00 01 00 04 01 08 00 40 00 00 00 07 00 03 00 ........@....... = bluetoothd: Bluetooth daemon 5.43 14.401828 > ACL Data RX: Handle 200 flags 0x00 dlen 1033 #36 [hci0] 14.275753 invalid packet size (12 != 1033) 08 00 01 00 04 01 04 00 40 00 00 00 ........@... Signed-off-by: Sungwoo Kim <[email protected]> Signed-off-by: Luiz Augusto von Dentz <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Dec 22, 2022
[ Upstream commit bcd7026 ] By keep sending L2CAP_CONF_REQ packets, chan->num_conf_rsp increases multiple times and eventually it will wrap around the maximum number (i.e., 255). This patch prevents this by adding a boundary check with L2CAP_MAX_CONF_RSP Btmon log: Bluetooth monitor ver 5.64 = Note: Linux version 6.1.0-rc2 (x86_64) 0.264594 = Note: Bluetooth subsystem version 2.22 0.264636 @ MGMT Open: btmon (privileged) version 1.22 {0x0001} 0.272191 = New Index: 00:00:00:00:00:00 (Primary,Virtual,hci0) [hci0] 13.877604 @ RAW Open: 9496 (privileged) version 2.22 {0x0002} 13.890741 = Open Index: 00:00:00:00:00:00 [hci0] 13.900426 (...) > ACL Data RX: Handle 200 flags 0x00 dlen 1033 #32 [hci0] 14.273106 invalid packet size (12 != 1033) 08 00 01 00 02 01 04 00 01 10 ff ff ............ > ACL Data RX: Handle 200 flags 0x00 dlen 1547 #33 [hci0] 14.273561 invalid packet size (14 != 1547) 0a 00 01 00 04 01 06 00 40 00 00 00 00 00 ........@..... > ACL Data RX: Handle 200 flags 0x00 dlen 2061 #34 [hci0] 14.274390 invalid packet size (16 != 2061) 0c 00 01 00 04 01 08 00 40 00 00 00 00 00 00 04 ........@....... > ACL Data RX: Handle 200 flags 0x00 dlen 2061 #35 [hci0] 14.274932 invalid packet size (16 != 2061) 0c 00 01 00 04 01 08 00 40 00 00 00 07 00 03 00 ........@....... = bluetoothd: Bluetooth daemon 5.43 14.401828 > ACL Data RX: Handle 200 flags 0x00 dlen 1033 #36 [hci0] 14.275753 invalid packet size (12 != 1033) 08 00 01 00 04 01 04 00 40 00 00 00 ........@... Signed-off-by: Sungwoo Kim <[email protected]> Signed-off-by: Luiz Augusto von Dentz <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Dec 22, 2022
[ Upstream commit bcd7026 ] By keep sending L2CAP_CONF_REQ packets, chan->num_conf_rsp increases multiple times and eventually it will wrap around the maximum number (i.e., 255). This patch prevents this by adding a boundary check with L2CAP_MAX_CONF_RSP Btmon log: Bluetooth monitor ver 5.64 = Note: Linux version 6.1.0-rc2 (x86_64) 0.264594 = Note: Bluetooth subsystem version 2.22 0.264636 @ MGMT Open: btmon (privileged) version 1.22 {0x0001} 0.272191 = New Index: 00:00:00:00:00:00 (Primary,Virtual,hci0) [hci0] 13.877604 @ RAW Open: 9496 (privileged) version 2.22 {0x0002} 13.890741 = Open Index: 00:00:00:00:00:00 [hci0] 13.900426 (...) > ACL Data RX: Handle 200 flags 0x00 dlen 1033 #32 [hci0] 14.273106 invalid packet size (12 != 1033) 08 00 01 00 02 01 04 00 01 10 ff ff ............ > ACL Data RX: Handle 200 flags 0x00 dlen 1547 #33 [hci0] 14.273561 invalid packet size (14 != 1547) 0a 00 01 00 04 01 06 00 40 00 00 00 00 00 ........@..... > ACL Data RX: Handle 200 flags 0x00 dlen 2061 #34 [hci0] 14.274390 invalid packet size (16 != 2061) 0c 00 01 00 04 01 08 00 40 00 00 00 00 00 00 04 ........@....... > ACL Data RX: Handle 200 flags 0x00 dlen 2061 #35 [hci0] 14.274932 invalid packet size (16 != 2061) 0c 00 01 00 04 01 08 00 40 00 00 00 07 00 03 00 ........@....... = bluetoothd: Bluetooth daemon 5.43 14.401828 > ACL Data RX: Handle 200 flags 0x00 dlen 1033 #36 [hci0] 14.275753 invalid packet size (12 != 1033) 08 00 01 00 04 01 04 00 40 00 00 00 ........@... Signed-off-by: Sungwoo Kim <[email protected]> Signed-off-by: Luiz Augusto von Dentz <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Jan 18, 2023
[ Upstream commit bcd7026 ] By keep sending L2CAP_CONF_REQ packets, chan->num_conf_rsp increases multiple times and eventually it will wrap around the maximum number (i.e., 255). This patch prevents this by adding a boundary check with L2CAP_MAX_CONF_RSP Btmon log: Bluetooth monitor ver 5.64 = Note: Linux version 6.1.0-rc2 (x86_64) 0.264594 = Note: Bluetooth subsystem version 2.22 0.264636 @ MGMT Open: btmon (privileged) version 1.22 {0x0001} 0.272191 = New Index: 00:00:00:00:00:00 (Primary,Virtual,hci0) [hci0] 13.877604 @ RAW Open: 9496 (privileged) version 2.22 {0x0002} 13.890741 = Open Index: 00:00:00:00:00:00 [hci0] 13.900426 (...) > ACL Data RX: Handle 200 flags 0x00 dlen 1033 #32 [hci0] 14.273106 invalid packet size (12 != 1033) 08 00 01 00 02 01 04 00 01 10 ff ff ............ > ACL Data RX: Handle 200 flags 0x00 dlen 1547 #33 [hci0] 14.273561 invalid packet size (14 != 1547) 0a 00 01 00 04 01 06 00 40 00 00 00 00 00 ........@..... > ACL Data RX: Handle 200 flags 0x00 dlen 2061 #34 [hci0] 14.274390 invalid packet size (16 != 2061) 0c 00 01 00 04 01 08 00 40 00 00 00 00 00 00 04 ........@....... > ACL Data RX: Handle 200 flags 0x00 dlen 2061 #35 [hci0] 14.274932 invalid packet size (16 != 2061) 0c 00 01 00 04 01 08 00 40 00 00 00 07 00 03 00 ........@....... = bluetoothd: Bluetooth daemon 5.43 14.401828 > ACL Data RX: Handle 200 flags 0x00 dlen 1033 #36 [hci0] 14.275753 invalid packet size (12 != 1033) 08 00 01 00 04 01 04 00 40 00 00 00 ........@... Signed-off-by: Sungwoo Kim <[email protected]> Signed-off-by: Luiz Augusto von Dentz <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Jan 18, 2023
[ Upstream commit bcd7026 ] By keep sending L2CAP_CONF_REQ packets, chan->num_conf_rsp increases multiple times and eventually it will wrap around the maximum number (i.e., 255). This patch prevents this by adding a boundary check with L2CAP_MAX_CONF_RSP Btmon log: Bluetooth monitor ver 5.64 = Note: Linux version 6.1.0-rc2 (x86_64) 0.264594 = Note: Bluetooth subsystem version 2.22 0.264636 @ MGMT Open: btmon (privileged) version 1.22 {0x0001} 0.272191 = New Index: 00:00:00:00:00:00 (Primary,Virtual,hci0) [hci0] 13.877604 @ RAW Open: 9496 (privileged) version 2.22 {0x0002} 13.890741 = Open Index: 00:00:00:00:00:00 [hci0] 13.900426 (...) > ACL Data RX: Handle 200 flags 0x00 dlen 1033 #32 [hci0] 14.273106 invalid packet size (12 != 1033) 08 00 01 00 02 01 04 00 01 10 ff ff ............ > ACL Data RX: Handle 200 flags 0x00 dlen 1547 #33 [hci0] 14.273561 invalid packet size (14 != 1547) 0a 00 01 00 04 01 06 00 40 00 00 00 00 00 ........@..... > ACL Data RX: Handle 200 flags 0x00 dlen 2061 #34 [hci0] 14.274390 invalid packet size (16 != 2061) 0c 00 01 00 04 01 08 00 40 00 00 00 00 00 00 04 ........@....... > ACL Data RX: Handle 200 flags 0x00 dlen 2061 #35 [hci0] 14.274932 invalid packet size (16 != 2061) 0c 00 01 00 04 01 08 00 40 00 00 00 07 00 03 00 ........@....... = bluetoothd: Bluetooth daemon 5.43 14.401828 > ACL Data RX: Handle 200 flags 0x00 dlen 1033 #36 [hci0] 14.275753 invalid packet size (12 != 1033) 08 00 01 00 04 01 04 00 40 00 00 00 ........@... Signed-off-by: Sungwoo Kim <[email protected]> Signed-off-by: Luiz Augusto von Dentz <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Jan 18, 2023
[ Upstream commit bcd7026 ] By keep sending L2CAP_CONF_REQ packets, chan->num_conf_rsp increases multiple times and eventually it will wrap around the maximum number (i.e., 255). This patch prevents this by adding a boundary check with L2CAP_MAX_CONF_RSP Btmon log: Bluetooth monitor ver 5.64 = Note: Linux version 6.1.0-rc2 (x86_64) 0.264594 = Note: Bluetooth subsystem version 2.22 0.264636 @ MGMT Open: btmon (privileged) version 1.22 {0x0001} 0.272191 = New Index: 00:00:00:00:00:00 (Primary,Virtual,hci0) [hci0] 13.877604 @ RAW Open: 9496 (privileged) version 2.22 {0x0002} 13.890741 = Open Index: 00:00:00:00:00:00 [hci0] 13.900426 (...) > ACL Data RX: Handle 200 flags 0x00 dlen 1033 #32 [hci0] 14.273106 invalid packet size (12 != 1033) 08 00 01 00 02 01 04 00 01 10 ff ff ............ > ACL Data RX: Handle 200 flags 0x00 dlen 1547 #33 [hci0] 14.273561 invalid packet size (14 != 1547) 0a 00 01 00 04 01 06 00 40 00 00 00 00 00 ........@..... > ACL Data RX: Handle 200 flags 0x00 dlen 2061 #34 [hci0] 14.274390 invalid packet size (16 != 2061) 0c 00 01 00 04 01 08 00 40 00 00 00 00 00 00 04 ........@....... > ACL Data RX: Handle 200 flags 0x00 dlen 2061 #35 [hci0] 14.274932 invalid packet size (16 != 2061) 0c 00 01 00 04 01 08 00 40 00 00 00 07 00 03 00 ........@....... = bluetoothd: Bluetooth daemon 5.43 14.401828 > ACL Data RX: Handle 200 flags 0x00 dlen 1033 #36 [hci0] 14.275753 invalid packet size (12 != 1033) 08 00 01 00 04 01 04 00 40 00 00 00 ........@... Signed-off-by: Sungwoo Kim <[email protected]> Signed-off-by: Luiz Augusto von Dentz <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Nov 23, 2023
[ Upstream commit 29a7e00 ] When employed within a sleepable program not under RCU protection, the use of 'bpf_task_under_cgroup()' may trigger a warning in the kernel log, particularly when CONFIG_PROVE_RCU is enabled: [ 1259.662357] WARNING: suspicious RCU usage [ 1259.662358] 6.5.0+ #33 Not tainted [ 1259.662360] ----------------------------- [ 1259.662361] include/linux/cgroup.h:423 suspicious rcu_dereference_check() usage! Other info that might help to debug this: [ 1259.662366] rcu_scheduler_active = 2, debug_locks = 1 [ 1259.662368] 1 lock held by trace/72954: [ 1259.662369] #0: ffffffffb5e3eda0 (rcu_read_lock_trace){....}-{0:0}, at: __bpf_prog_enter_sleepable+0x0/0xb0 Stack backtrace: [ 1259.662385] CPU: 50 PID: 72954 Comm: trace Kdump: loaded Not tainted 6.5.0+ #33 [ 1259.662391] Call Trace: [ 1259.662393] <TASK> [ 1259.662395] dump_stack_lvl+0x6e/0x90 [ 1259.662401] dump_stack+0x10/0x20 [ 1259.662404] lockdep_rcu_suspicious+0x163/0x1b0 [ 1259.662412] task_css_set.part.0+0x23/0x30 [ 1259.662417] bpf_task_under_cgroup+0xe7/0xf0 [ 1259.662422] bpf_prog_7fffba481a3bcf88_lsm_run+0x5c/0x93 [ 1259.662431] bpf_trampoline_6442505574+0x60/0x1000 [ 1259.662439] bpf_lsm_bpf+0x5/0x20 [ 1259.662443] ? security_bpf+0x32/0x50 [ 1259.662452] __sys_bpf+0xe6/0xdd0 [ 1259.662463] __x64_sys_bpf+0x1a/0x30 [ 1259.662467] do_syscall_64+0x38/0x90 [ 1259.662472] entry_SYSCALL_64_after_hwframe+0x6e/0xd8 [ 1259.662479] RIP: 0033:0x7f487baf8e29 [...] [ 1259.662504] </TASK> This issue can be reproduced by executing a straightforward program, as demonstrated below: SEC("lsm.s/bpf") int BPF_PROG(lsm_run, int cmd, union bpf_attr *attr, unsigned int size) { struct cgroup *cgrp = NULL; struct task_struct *task; int ret = 0; if (cmd != BPF_LINK_CREATE) return 0; // The cgroup2 should be mounted first cgrp = bpf_cgroup_from_id(1); if (!cgrp) goto out; task = bpf_get_current_task_btf(); if (bpf_task_under_cgroup(task, cgrp)) ret = -1; bpf_cgroup_release(cgrp); out: return ret; } After running the program, if you subsequently execute another BPF program, you will encounter the warning. It's worth noting that task_under_cgroup_hierarchy() is also utilized by bpf_current_task_under_cgroup(). However, bpf_current_task_under_cgroup() doesn't exhibit this issue because it cannot be used in sleepable BPF programs. Fixes: b5ad4cd ("bpf: Add bpf_task_under_cgroup() kfunc") Signed-off-by: Yafang Shao <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Acked-by: Stanislav Fomichev <[email protected]> Cc: Feng Zhou <[email protected]> Cc: KP Singh <[email protected]> Link: https://lore.kernel.org/bpf/[email protected] Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Dec 9, 2023
[ Upstream commit 29a7e00 ] When employed within a sleepable program not under RCU protection, the use of 'bpf_task_under_cgroup()' may trigger a warning in the kernel log, particularly when CONFIG_PROVE_RCU is enabled: [ 1259.662357] WARNING: suspicious RCU usage [ 1259.662358] 6.5.0+ #33 Not tainted [ 1259.662360] ----------------------------- [ 1259.662361] include/linux/cgroup.h:423 suspicious rcu_dereference_check() usage! Other info that might help to debug this: [ 1259.662366] rcu_scheduler_active = 2, debug_locks = 1 [ 1259.662368] 1 lock held by trace/72954: [ 1259.662369] #0: ffffffffb5e3eda0 (rcu_read_lock_trace){....}-{0:0}, at: __bpf_prog_enter_sleepable+0x0/0xb0 Stack backtrace: [ 1259.662385] CPU: 50 PID: 72954 Comm: trace Kdump: loaded Not tainted 6.5.0+ #33 [ 1259.662391] Call Trace: [ 1259.662393] <TASK> [ 1259.662395] dump_stack_lvl+0x6e/0x90 [ 1259.662401] dump_stack+0x10/0x20 [ 1259.662404] lockdep_rcu_suspicious+0x163/0x1b0 [ 1259.662412] task_css_set.part.0+0x23/0x30 [ 1259.662417] bpf_task_under_cgroup+0xe7/0xf0 [ 1259.662422] bpf_prog_7fffba481a3bcf88_lsm_run+0x5c/0x93 [ 1259.662431] bpf_trampoline_6442505574+0x60/0x1000 [ 1259.662439] bpf_lsm_bpf+0x5/0x20 [ 1259.662443] ? security_bpf+0x32/0x50 [ 1259.662452] __sys_bpf+0xe6/0xdd0 [ 1259.662463] __x64_sys_bpf+0x1a/0x30 [ 1259.662467] do_syscall_64+0x38/0x90 [ 1259.662472] entry_SYSCALL_64_after_hwframe+0x6e/0xd8 [ 1259.662479] RIP: 0033:0x7f487baf8e29 [...] [ 1259.662504] </TASK> This issue can be reproduced by executing a straightforward program, as demonstrated below: SEC("lsm.s/bpf") int BPF_PROG(lsm_run, int cmd, union bpf_attr *attr, unsigned int size) { struct cgroup *cgrp = NULL; struct task_struct *task; int ret = 0; if (cmd != BPF_LINK_CREATE) return 0; // The cgroup2 should be mounted first cgrp = bpf_cgroup_from_id(1); if (!cgrp) goto out; task = bpf_get_current_task_btf(); if (bpf_task_under_cgroup(task, cgrp)) ret = -1; bpf_cgroup_release(cgrp); out: return ret; } After running the program, if you subsequently execute another BPF program, you will encounter the warning. It's worth noting that task_under_cgroup_hierarchy() is also utilized by bpf_current_task_under_cgroup(). However, bpf_current_task_under_cgroup() doesn't exhibit this issue because it cannot be used in sleepable BPF programs. Fixes: b5ad4cd ("bpf: Add bpf_task_under_cgroup() kfunc") Signed-off-by: Yafang Shao <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Acked-by: Stanislav Fomichev <[email protected]> Cc: Feng Zhou <[email protected]> Cc: KP Singh <[email protected]> Link: https://lore.kernel.org/bpf/[email protected] Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Jun 28, 2024
[ Upstream commit 14bb1e8 ] Recently, I frequently hit the following test failure: [root@arch-fb-vm1 bpf]# ./test_progs -n 33/1 test_lookup_update:PASS:skel_open 0 nsec [...] test_lookup_update:PASS:sync_rcu 0 nsec test_lookup_update:FAIL:map1_leak inner_map1 leaked! #33/1 btf_map_in_map/lookup_update:FAIL #33 btf_map_in_map:FAIL In the test, after map is closed and then after two rcu grace periods, it is assumed that map_id is not available to user space. But the above assumption cannot be guaranteed. After zero or one or two rcu grace periods in different siturations, the actual freeing-map-work is put into a workqueue. Later on, when the work is dequeued, the map will be actually freed. See bpf_map_put() in kernel/bpf/syscall.c. By using workqueue, there is no ganrantee that map will be actually freed after a couple of rcu grace periods. This patch removed such map leak detection and then the test can pass consistently. Signed-off-by: Yonghong Song <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Link: https://lore.kernel.org/bpf/[email protected] Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Jun 28, 2024
[ Upstream commit 14bb1e8 ] Recently, I frequently hit the following test failure: [root@arch-fb-vm1 bpf]# ./test_progs -n 33/1 test_lookup_update:PASS:skel_open 0 nsec [...] test_lookup_update:PASS:sync_rcu 0 nsec test_lookup_update:FAIL:map1_leak inner_map1 leaked! #33/1 btf_map_in_map/lookup_update:FAIL #33 btf_map_in_map:FAIL In the test, after map is closed and then after two rcu grace periods, it is assumed that map_id is not available to user space. But the above assumption cannot be guaranteed. After zero or one or two rcu grace periods in different siturations, the actual freeing-map-work is put into a workqueue. Later on, when the work is dequeued, the map will be actually freed. See bpf_map_put() in kernel/bpf/syscall.c. By using workqueue, there is no ganrantee that map will be actually freed after a couple of rcu grace periods. This patch removed such map leak detection and then the test can pass consistently. Signed-off-by: Yonghong Song <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Link: https://lore.kernel.org/bpf/[email protected] Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Jun 28, 2024
[ Upstream commit 14bb1e8 ] Recently, I frequently hit the following test failure: [root@arch-fb-vm1 bpf]# ./test_progs -n 33/1 test_lookup_update:PASS:skel_open 0 nsec [...] test_lookup_update:PASS:sync_rcu 0 nsec test_lookup_update:FAIL:map1_leak inner_map1 leaked! #33/1 btf_map_in_map/lookup_update:FAIL #33 btf_map_in_map:FAIL In the test, after map is closed and then after two rcu grace periods, it is assumed that map_id is not available to user space. But the above assumption cannot be guaranteed. After zero or one or two rcu grace periods in different siturations, the actual freeing-map-work is put into a workqueue. Later on, when the work is dequeued, the map will be actually freed. See bpf_map_put() in kernel/bpf/syscall.c. By using workqueue, there is no ganrantee that map will be actually freed after a couple of rcu grace periods. This patch removed such map leak detection and then the test can pass consistently. Signed-off-by: Yonghong Song <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Link: https://lore.kernel.org/bpf/[email protected] Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Jul 6, 2024
[ Upstream commit 14bb1e8 ] Recently, I frequently hit the following test failure: [root@arch-fb-vm1 bpf]# ./test_progs -n 33/1 test_lookup_update:PASS:skel_open 0 nsec [...] test_lookup_update:PASS:sync_rcu 0 nsec test_lookup_update:FAIL:map1_leak inner_map1 leaked! #33/1 btf_map_in_map/lookup_update:FAIL #33 btf_map_in_map:FAIL In the test, after map is closed and then after two rcu grace periods, it is assumed that map_id is not available to user space. But the above assumption cannot be guaranteed. After zero or one or two rcu grace periods in different siturations, the actual freeing-map-work is put into a workqueue. Later on, when the work is dequeued, the map will be actually freed. See bpf_map_put() in kernel/bpf/syscall.c. By using workqueue, there is no ganrantee that map will be actually freed after a couple of rcu grace periods. This patch removed such map leak detection and then the test can pass consistently. Signed-off-by: Yonghong Song <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Link: https://lore.kernel.org/bpf/[email protected] Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Jul 6, 2024
[ Upstream commit 14bb1e8 ] Recently, I frequently hit the following test failure: [root@arch-fb-vm1 bpf]# ./test_progs -n 33/1 test_lookup_update:PASS:skel_open 0 nsec [...] test_lookup_update:PASS:sync_rcu 0 nsec test_lookup_update:FAIL:map1_leak inner_map1 leaked! #33/1 btf_map_in_map/lookup_update:FAIL #33 btf_map_in_map:FAIL In the test, after map is closed and then after two rcu grace periods, it is assumed that map_id is not available to user space. But the above assumption cannot be guaranteed. After zero or one or two rcu grace periods in different siturations, the actual freeing-map-work is put into a workqueue. Later on, when the work is dequeued, the map will be actually freed. See bpf_map_put() in kernel/bpf/syscall.c. By using workqueue, there is no ganrantee that map will be actually freed after a couple of rcu grace periods. This patch removed such map leak detection and then the test can pass consistently. Signed-off-by: Yonghong Song <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Link: https://lore.kernel.org/bpf/[email protected] Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Jul 11, 2024
[ Upstream commit af9a873 ] During the stress testing of the jffs2 file system,the following abnormal printouts were found: [ 2430.649000] Unable to handle kernel paging request at virtual address 0069696969696948 [ 2430.649622] Mem abort info: [ 2430.649829] ESR = 0x96000004 [ 2430.650115] EC = 0x25: DABT (current EL), IL = 32 bits [ 2430.650564] SET = 0, FnV = 0 [ 2430.650795] EA = 0, S1PTW = 0 [ 2430.651032] FSC = 0x04: level 0 translation fault [ 2430.651446] Data abort info: [ 2430.651683] ISV = 0, ISS = 0x00000004 [ 2430.652001] CM = 0, WnR = 0 [ 2430.652558] [0069696969696948] address between user and kernel address ranges [ 2430.653265] Internal error: Oops: 96000004 [#1] PREEMPT SMP [ 2430.654512] CPU: 2 PID: 20919 Comm: cat Not tainted 5.15.25-g512f31242bf6 #33 [ 2430.655008] Hardware name: linux,dummy-virt (DT) [ 2430.655517] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 2430.656142] pc : kfree+0x78/0x348 [ 2430.656630] lr : jffs2_free_inode+0x24/0x48 [ 2430.657051] sp : ffff800009eebd10 [ 2430.657355] x29: ffff800009eebd10 x28: 0000000000000001 x27: 0000000000000000 [ 2430.658327] x26: ffff000038f09d80 x25: 0080000000000000 x24: ffff800009d38000 [ 2430.658919] x23: 5a5a5a5a5a5a5a5a x22: ffff000038f09d80 x21: ffff8000084f0d14 [ 2430.659434] x20: ffff0000bf9a6ac0 x19: 0169696969696940 x18: 0000000000000000 [ 2430.659969] x17: ffff8000b6506000 x16: ffff800009eec000 x15: 0000000000004000 [ 2430.660637] x14: 0000000000000000 x13: 00000001000820a1 x12: 00000000000d1b19 [ 2430.661345] x11: 0004000800000000 x10: 0000000000000001 x9 : ffff8000084f0d14 [ 2430.662025] x8 : ffff0000bf9a6b40 x7 : ffff0000bf9a6b48 x6 : 0000000003470302 [ 2430.662695] x5 : ffff00002e41dcc0 x4 : ffff0000bf9aa3b0 x3 : 0000000003470342 [ 2430.663486] x2 : 0000000000000000 x1 : ffff8000084f0d14 x0 : fffffc0000000000 [ 2430.664217] Call trace: [ 2430.664528] kfree+0x78/0x348 [ 2430.664855] jffs2_free_inode+0x24/0x48 [ 2430.665233] i_callback+0x24/0x50 [ 2430.665528] rcu_do_batch+0x1ac/0x448 [ 2430.665892] rcu_core+0x28c/0x3c8 [ 2430.666151] rcu_core_si+0x18/0x28 [ 2430.666473] __do_softirq+0x138/0x3cc [ 2430.666781] irq_exit+0xf0/0x110 [ 2430.667065] handle_domain_irq+0x6c/0x98 [ 2430.667447] gic_handle_irq+0xac/0xe8 [ 2430.667739] call_on_irq_stack+0x28/0x54 The parameter passed to kfree was 5a5a5a5a, which corresponds to the target field of the jffs_inode_info structure. It was found that all variables in the jffs_inode_info structure were 5a5a5a5a, except for the first member sem. It is suspected that these variables are not initialized because they were set to 5a5a5a5a during memory testing, which is meant to detect uninitialized memory.The sem variable is initialized in the function jffs2_i_init_once, while other members are initialized in the function jffs2_init_inode_info. The function jffs2_init_inode_info is called after iget_locked, but in the iget_locked function, the destroy_inode process is triggered, which releases the inode and consequently, the target member of the inode is not initialized.In concurrent high pressure scenarios, iget_locked may enter the destroy_inode branch as described in the code. Since the destroy_inode functionality of jffs2 only releases the target, the fix method is to set target to NULL in jffs2_i_init_once. Signed-off-by: Wang Yong <[email protected]> Reviewed-by: Lu Zhongjun <[email protected]> Reviewed-by: Yang Tao <[email protected]> Cc: Xu Xin <[email protected]> Cc: Yang Yang <[email protected]> Signed-off-by: Richard Weinberger <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Jul 11, 2024
[ Upstream commit af9a873 ] During the stress testing of the jffs2 file system,the following abnormal printouts were found: [ 2430.649000] Unable to handle kernel paging request at virtual address 0069696969696948 [ 2430.649622] Mem abort info: [ 2430.649829] ESR = 0x96000004 [ 2430.650115] EC = 0x25: DABT (current EL), IL = 32 bits [ 2430.650564] SET = 0, FnV = 0 [ 2430.650795] EA = 0, S1PTW = 0 [ 2430.651032] FSC = 0x04: level 0 translation fault [ 2430.651446] Data abort info: [ 2430.651683] ISV = 0, ISS = 0x00000004 [ 2430.652001] CM = 0, WnR = 0 [ 2430.652558] [0069696969696948] address between user and kernel address ranges [ 2430.653265] Internal error: Oops: 96000004 [#1] PREEMPT SMP [ 2430.654512] CPU: 2 PID: 20919 Comm: cat Not tainted 5.15.25-g512f31242bf6 #33 [ 2430.655008] Hardware name: linux,dummy-virt (DT) [ 2430.655517] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 2430.656142] pc : kfree+0x78/0x348 [ 2430.656630] lr : jffs2_free_inode+0x24/0x48 [ 2430.657051] sp : ffff800009eebd10 [ 2430.657355] x29: ffff800009eebd10 x28: 0000000000000001 x27: 0000000000000000 [ 2430.658327] x26: ffff000038f09d80 x25: 0080000000000000 x24: ffff800009d38000 [ 2430.658919] x23: 5a5a5a5a5a5a5a5a x22: ffff000038f09d80 x21: ffff8000084f0d14 [ 2430.659434] x20: ffff0000bf9a6ac0 x19: 0169696969696940 x18: 0000000000000000 [ 2430.659969] x17: ffff8000b6506000 x16: ffff800009eec000 x15: 0000000000004000 [ 2430.660637] x14: 0000000000000000 x13: 00000001000820a1 x12: 00000000000d1b19 [ 2430.661345] x11: 0004000800000000 x10: 0000000000000001 x9 : ffff8000084f0d14 [ 2430.662025] x8 : ffff0000bf9a6b40 x7 : ffff0000bf9a6b48 x6 : 0000000003470302 [ 2430.662695] x5 : ffff00002e41dcc0 x4 : ffff0000bf9aa3b0 x3 : 0000000003470342 [ 2430.663486] x2 : 0000000000000000 x1 : ffff8000084f0d14 x0 : fffffc0000000000 [ 2430.664217] Call trace: [ 2430.664528] kfree+0x78/0x348 [ 2430.664855] jffs2_free_inode+0x24/0x48 [ 2430.665233] i_callback+0x24/0x50 [ 2430.665528] rcu_do_batch+0x1ac/0x448 [ 2430.665892] rcu_core+0x28c/0x3c8 [ 2430.666151] rcu_core_si+0x18/0x28 [ 2430.666473] __do_softirq+0x138/0x3cc [ 2430.666781] irq_exit+0xf0/0x110 [ 2430.667065] handle_domain_irq+0x6c/0x98 [ 2430.667447] gic_handle_irq+0xac/0xe8 [ 2430.667739] call_on_irq_stack+0x28/0x54 The parameter passed to kfree was 5a5a5a5a, which corresponds to the target field of the jffs_inode_info structure. It was found that all variables in the jffs_inode_info structure were 5a5a5a5a, except for the first member sem. It is suspected that these variables are not initialized because they were set to 5a5a5a5a during memory testing, which is meant to detect uninitialized memory.The sem variable is initialized in the function jffs2_i_init_once, while other members are initialized in the function jffs2_init_inode_info. The function jffs2_init_inode_info is called after iget_locked, but in the iget_locked function, the destroy_inode process is triggered, which releases the inode and consequently, the target member of the inode is not initialized.In concurrent high pressure scenarios, iget_locked may enter the destroy_inode branch as described in the code. Since the destroy_inode functionality of jffs2 only releases the target, the fix method is to set target to NULL in jffs2_i_init_once. Signed-off-by: Wang Yong <[email protected]> Reviewed-by: Lu Zhongjun <[email protected]> Reviewed-by: Yang Tao <[email protected]> Cc: Xu Xin <[email protected]> Cc: Yang Yang <[email protected]> Signed-off-by: Richard Weinberger <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Jul 11, 2024
[ Upstream commit af9a873 ] During the stress testing of the jffs2 file system,the following abnormal printouts were found: [ 2430.649000] Unable to handle kernel paging request at virtual address 0069696969696948 [ 2430.649622] Mem abort info: [ 2430.649829] ESR = 0x96000004 [ 2430.650115] EC = 0x25: DABT (current EL), IL = 32 bits [ 2430.650564] SET = 0, FnV = 0 [ 2430.650795] EA = 0, S1PTW = 0 [ 2430.651032] FSC = 0x04: level 0 translation fault [ 2430.651446] Data abort info: [ 2430.651683] ISV = 0, ISS = 0x00000004 [ 2430.652001] CM = 0, WnR = 0 [ 2430.652558] [0069696969696948] address between user and kernel address ranges [ 2430.653265] Internal error: Oops: 96000004 [#1] PREEMPT SMP [ 2430.654512] CPU: 2 PID: 20919 Comm: cat Not tainted 5.15.25-g512f31242bf6 #33 [ 2430.655008] Hardware name: linux,dummy-virt (DT) [ 2430.655517] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 2430.656142] pc : kfree+0x78/0x348 [ 2430.656630] lr : jffs2_free_inode+0x24/0x48 [ 2430.657051] sp : ffff800009eebd10 [ 2430.657355] x29: ffff800009eebd10 x28: 0000000000000001 x27: 0000000000000000 [ 2430.658327] x26: ffff000038f09d80 x25: 0080000000000000 x24: ffff800009d38000 [ 2430.658919] x23: 5a5a5a5a5a5a5a5a x22: ffff000038f09d80 x21: ffff8000084f0d14 [ 2430.659434] x20: ffff0000bf9a6ac0 x19: 0169696969696940 x18: 0000000000000000 [ 2430.659969] x17: ffff8000b6506000 x16: ffff800009eec000 x15: 0000000000004000 [ 2430.660637] x14: 0000000000000000 x13: 00000001000820a1 x12: 00000000000d1b19 [ 2430.661345] x11: 0004000800000000 x10: 0000000000000001 x9 : ffff8000084f0d14 [ 2430.662025] x8 : ffff0000bf9a6b40 x7 : ffff0000bf9a6b48 x6 : 0000000003470302 [ 2430.662695] x5 : ffff00002e41dcc0 x4 : ffff0000bf9aa3b0 x3 : 0000000003470342 [ 2430.663486] x2 : 0000000000000000 x1 : ffff8000084f0d14 x0 : fffffc0000000000 [ 2430.664217] Call trace: [ 2430.664528] kfree+0x78/0x348 [ 2430.664855] jffs2_free_inode+0x24/0x48 [ 2430.665233] i_callback+0x24/0x50 [ 2430.665528] rcu_do_batch+0x1ac/0x448 [ 2430.665892] rcu_core+0x28c/0x3c8 [ 2430.666151] rcu_core_si+0x18/0x28 [ 2430.666473] __do_softirq+0x138/0x3cc [ 2430.666781] irq_exit+0xf0/0x110 [ 2430.667065] handle_domain_irq+0x6c/0x98 [ 2430.667447] gic_handle_irq+0xac/0xe8 [ 2430.667739] call_on_irq_stack+0x28/0x54 The parameter passed to kfree was 5a5a5a5a, which corresponds to the target field of the jffs_inode_info structure. It was found that all variables in the jffs_inode_info structure were 5a5a5a5a, except for the first member sem. It is suspected that these variables are not initialized because they were set to 5a5a5a5a during memory testing, which is meant to detect uninitialized memory.The sem variable is initialized in the function jffs2_i_init_once, while other members are initialized in the function jffs2_init_inode_info. The function jffs2_init_inode_info is called after iget_locked, but in the iget_locked function, the destroy_inode process is triggered, which releases the inode and consequently, the target member of the inode is not initialized.In concurrent high pressure scenarios, iget_locked may enter the destroy_inode branch as described in the code. Since the destroy_inode functionality of jffs2 only releases the target, the fix method is to set target to NULL in jffs2_i_init_once. Signed-off-by: Wang Yong <[email protected]> Reviewed-by: Lu Zhongjun <[email protected]> Reviewed-by: Yang Tao <[email protected]> Cc: Xu Xin <[email protected]> Cc: Yang Yang <[email protected]> Signed-off-by: Richard Weinberger <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Jul 18, 2024
[ Upstream commit af9a873 ] During the stress testing of the jffs2 file system,the following abnormal printouts were found: [ 2430.649000] Unable to handle kernel paging request at virtual address 0069696969696948 [ 2430.649622] Mem abort info: [ 2430.649829] ESR = 0x96000004 [ 2430.650115] EC = 0x25: DABT (current EL), IL = 32 bits [ 2430.650564] SET = 0, FnV = 0 [ 2430.650795] EA = 0, S1PTW = 0 [ 2430.651032] FSC = 0x04: level 0 translation fault [ 2430.651446] Data abort info: [ 2430.651683] ISV = 0, ISS = 0x00000004 [ 2430.652001] CM = 0, WnR = 0 [ 2430.652558] [0069696969696948] address between user and kernel address ranges [ 2430.653265] Internal error: Oops: 96000004 [#1] PREEMPT SMP [ 2430.654512] CPU: 2 PID: 20919 Comm: cat Not tainted 5.15.25-g512f31242bf6 #33 [ 2430.655008] Hardware name: linux,dummy-virt (DT) [ 2430.655517] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 2430.656142] pc : kfree+0x78/0x348 [ 2430.656630] lr : jffs2_free_inode+0x24/0x48 [ 2430.657051] sp : ffff800009eebd10 [ 2430.657355] x29: ffff800009eebd10 x28: 0000000000000001 x27: 0000000000000000 [ 2430.658327] x26: ffff000038f09d80 x25: 0080000000000000 x24: ffff800009d38000 [ 2430.658919] x23: 5a5a5a5a5a5a5a5a x22: ffff000038f09d80 x21: ffff8000084f0d14 [ 2430.659434] x20: ffff0000bf9a6ac0 x19: 0169696969696940 x18: 0000000000000000 [ 2430.659969] x17: ffff8000b6506000 x16: ffff800009eec000 x15: 0000000000004000 [ 2430.660637] x14: 0000000000000000 x13: 00000001000820a1 x12: 00000000000d1b19 [ 2430.661345] x11: 0004000800000000 x10: 0000000000000001 x9 : ffff8000084f0d14 [ 2430.662025] x8 : ffff0000bf9a6b40 x7 : ffff0000bf9a6b48 x6 : 0000000003470302 [ 2430.662695] x5 : ffff00002e41dcc0 x4 : ffff0000bf9aa3b0 x3 : 0000000003470342 [ 2430.663486] x2 : 0000000000000000 x1 : ffff8000084f0d14 x0 : fffffc0000000000 [ 2430.664217] Call trace: [ 2430.664528] kfree+0x78/0x348 [ 2430.664855] jffs2_free_inode+0x24/0x48 [ 2430.665233] i_callback+0x24/0x50 [ 2430.665528] rcu_do_batch+0x1ac/0x448 [ 2430.665892] rcu_core+0x28c/0x3c8 [ 2430.666151] rcu_core_si+0x18/0x28 [ 2430.666473] __do_softirq+0x138/0x3cc [ 2430.666781] irq_exit+0xf0/0x110 [ 2430.667065] handle_domain_irq+0x6c/0x98 [ 2430.667447] gic_handle_irq+0xac/0xe8 [ 2430.667739] call_on_irq_stack+0x28/0x54 The parameter passed to kfree was 5a5a5a5a, which corresponds to the target field of the jffs_inode_info structure. It was found that all variables in the jffs_inode_info structure were 5a5a5a5a, except for the first member sem. It is suspected that these variables are not initialized because they were set to 5a5a5a5a during memory testing, which is meant to detect uninitialized memory.The sem variable is initialized in the function jffs2_i_init_once, while other members are initialized in the function jffs2_init_inode_info. The function jffs2_init_inode_info is called after iget_locked, but in the iget_locked function, the destroy_inode process is triggered, which releases the inode and consequently, the target member of the inode is not initialized.In concurrent high pressure scenarios, iget_locked may enter the destroy_inode branch as described in the code. Since the destroy_inode functionality of jffs2 only releases the target, the fix method is to set target to NULL in jffs2_i_init_once. Signed-off-by: Wang Yong <[email protected]> Reviewed-by: Lu Zhongjun <[email protected]> Reviewed-by: Yang Tao <[email protected]> Cc: Xu Xin <[email protected]> Cc: Yang Yang <[email protected]> Signed-off-by: Richard Weinberger <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Jul 18, 2024
[ Upstream commit af9a873 ] During the stress testing of the jffs2 file system,the following abnormal printouts were found: [ 2430.649000] Unable to handle kernel paging request at virtual address 0069696969696948 [ 2430.649622] Mem abort info: [ 2430.649829] ESR = 0x96000004 [ 2430.650115] EC = 0x25: DABT (current EL), IL = 32 bits [ 2430.650564] SET = 0, FnV = 0 [ 2430.650795] EA = 0, S1PTW = 0 [ 2430.651032] FSC = 0x04: level 0 translation fault [ 2430.651446] Data abort info: [ 2430.651683] ISV = 0, ISS = 0x00000004 [ 2430.652001] CM = 0, WnR = 0 [ 2430.652558] [0069696969696948] address between user and kernel address ranges [ 2430.653265] Internal error: Oops: 96000004 [#1] PREEMPT SMP [ 2430.654512] CPU: 2 PID: 20919 Comm: cat Not tainted 5.15.25-g512f31242bf6 #33 [ 2430.655008] Hardware name: linux,dummy-virt (DT) [ 2430.655517] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 2430.656142] pc : kfree+0x78/0x348 [ 2430.656630] lr : jffs2_free_inode+0x24/0x48 [ 2430.657051] sp : ffff800009eebd10 [ 2430.657355] x29: ffff800009eebd10 x28: 0000000000000001 x27: 0000000000000000 [ 2430.658327] x26: ffff000038f09d80 x25: 0080000000000000 x24: ffff800009d38000 [ 2430.658919] x23: 5a5a5a5a5a5a5a5a x22: ffff000038f09d80 x21: ffff8000084f0d14 [ 2430.659434] x20: ffff0000bf9a6ac0 x19: 0169696969696940 x18: 0000000000000000 [ 2430.659969] x17: ffff8000b6506000 x16: ffff800009eec000 x15: 0000000000004000 [ 2430.660637] x14: 0000000000000000 x13: 00000001000820a1 x12: 00000000000d1b19 [ 2430.661345] x11: 0004000800000000 x10: 0000000000000001 x9 : ffff8000084f0d14 [ 2430.662025] x8 : ffff0000bf9a6b40 x7 : ffff0000bf9a6b48 x6 : 0000000003470302 [ 2430.662695] x5 : ffff00002e41dcc0 x4 : ffff0000bf9aa3b0 x3 : 0000000003470342 [ 2430.663486] x2 : 0000000000000000 x1 : ffff8000084f0d14 x0 : fffffc0000000000 [ 2430.664217] Call trace: [ 2430.664528] kfree+0x78/0x348 [ 2430.664855] jffs2_free_inode+0x24/0x48 [ 2430.665233] i_callback+0x24/0x50 [ 2430.665528] rcu_do_batch+0x1ac/0x448 [ 2430.665892] rcu_core+0x28c/0x3c8 [ 2430.666151] rcu_core_si+0x18/0x28 [ 2430.666473] __do_softirq+0x138/0x3cc [ 2430.666781] irq_exit+0xf0/0x110 [ 2430.667065] handle_domain_irq+0x6c/0x98 [ 2430.667447] gic_handle_irq+0xac/0xe8 [ 2430.667739] call_on_irq_stack+0x28/0x54 The parameter passed to kfree was 5a5a5a5a, which corresponds to the target field of the jffs_inode_info structure. It was found that all variables in the jffs_inode_info structure were 5a5a5a5a, except for the first member sem. It is suspected that these variables are not initialized because they were set to 5a5a5a5a during memory testing, which is meant to detect uninitialized memory.The sem variable is initialized in the function jffs2_i_init_once, while other members are initialized in the function jffs2_init_inode_info. The function jffs2_init_inode_info is called after iget_locked, but in the iget_locked function, the destroy_inode process is triggered, which releases the inode and consequently, the target member of the inode is not initialized.In concurrent high pressure scenarios, iget_locked may enter the destroy_inode branch as described in the code. Since the destroy_inode functionality of jffs2 only releases the target, the fix method is to set target to NULL in jffs2_i_init_once. Signed-off-by: Wang Yong <[email protected]> Reviewed-by: Lu Zhongjun <[email protected]> Reviewed-by: Yang Tao <[email protected]> Cc: Xu Xin <[email protected]> Cc: Yang Yang <[email protected]> Signed-off-by: Richard Weinberger <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Jul 18, 2024
[ Upstream commit af9a873 ] During the stress testing of the jffs2 file system,the following abnormal printouts were found: [ 2430.649000] Unable to handle kernel paging request at virtual address 0069696969696948 [ 2430.649622] Mem abort info: [ 2430.649829] ESR = 0x96000004 [ 2430.650115] EC = 0x25: DABT (current EL), IL = 32 bits [ 2430.650564] SET = 0, FnV = 0 [ 2430.650795] EA = 0, S1PTW = 0 [ 2430.651032] FSC = 0x04: level 0 translation fault [ 2430.651446] Data abort info: [ 2430.651683] ISV = 0, ISS = 0x00000004 [ 2430.652001] CM = 0, WnR = 0 [ 2430.652558] [0069696969696948] address between user and kernel address ranges [ 2430.653265] Internal error: Oops: 96000004 [#1] PREEMPT SMP [ 2430.654512] CPU: 2 PID: 20919 Comm: cat Not tainted 5.15.25-g512f31242bf6 #33 [ 2430.655008] Hardware name: linux,dummy-virt (DT) [ 2430.655517] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 2430.656142] pc : kfree+0x78/0x348 [ 2430.656630] lr : jffs2_free_inode+0x24/0x48 [ 2430.657051] sp : ffff800009eebd10 [ 2430.657355] x29: ffff800009eebd10 x28: 0000000000000001 x27: 0000000000000000 [ 2430.658327] x26: ffff000038f09d80 x25: 0080000000000000 x24: ffff800009d38000 [ 2430.658919] x23: 5a5a5a5a5a5a5a5a x22: ffff000038f09d80 x21: ffff8000084f0d14 [ 2430.659434] x20: ffff0000bf9a6ac0 x19: 0169696969696940 x18: 0000000000000000 [ 2430.659969] x17: ffff8000b6506000 x16: ffff800009eec000 x15: 0000000000004000 [ 2430.660637] x14: 0000000000000000 x13: 00000001000820a1 x12: 00000000000d1b19 [ 2430.661345] x11: 0004000800000000 x10: 0000000000000001 x9 : ffff8000084f0d14 [ 2430.662025] x8 : ffff0000bf9a6b40 x7 : ffff0000bf9a6b48 x6 : 0000000003470302 [ 2430.662695] x5 : ffff00002e41dcc0 x4 : ffff0000bf9aa3b0 x3 : 0000000003470342 [ 2430.663486] x2 : 0000000000000000 x1 : ffff8000084f0d14 x0 : fffffc0000000000 [ 2430.664217] Call trace: [ 2430.664528] kfree+0x78/0x348 [ 2430.664855] jffs2_free_inode+0x24/0x48 [ 2430.665233] i_callback+0x24/0x50 [ 2430.665528] rcu_do_batch+0x1ac/0x448 [ 2430.665892] rcu_core+0x28c/0x3c8 [ 2430.666151] rcu_core_si+0x18/0x28 [ 2430.666473] __do_softirq+0x138/0x3cc [ 2430.666781] irq_exit+0xf0/0x110 [ 2430.667065] handle_domain_irq+0x6c/0x98 [ 2430.667447] gic_handle_irq+0xac/0xe8 [ 2430.667739] call_on_irq_stack+0x28/0x54 The parameter passed to kfree was 5a5a5a5a, which corresponds to the target field of the jffs_inode_info structure. It was found that all variables in the jffs_inode_info structure were 5a5a5a5a, except for the first member sem. It is suspected that these variables are not initialized because they were set to 5a5a5a5a during memory testing, which is meant to detect uninitialized memory.The sem variable is initialized in the function jffs2_i_init_once, while other members are initialized in the function jffs2_init_inode_info. The function jffs2_init_inode_info is called after iget_locked, but in the iget_locked function, the destroy_inode process is triggered, which releases the inode and consequently, the target member of the inode is not initialized.In concurrent high pressure scenarios, iget_locked may enter the destroy_inode branch as described in the code. Since the destroy_inode functionality of jffs2 only releases the target, the fix method is to set target to NULL in jffs2_i_init_once. Signed-off-by: Wang Yong <[email protected]> Reviewed-by: Lu Zhongjun <[email protected]> Reviewed-by: Yang Tao <[email protected]> Cc: Xu Xin <[email protected]> Cc: Yang Yang <[email protected]> Signed-off-by: Richard Weinberger <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Jul 18, 2024
[ Upstream commit af9a873 ] During the stress testing of the jffs2 file system,the following abnormal printouts were found: [ 2430.649000] Unable to handle kernel paging request at virtual address 0069696969696948 [ 2430.649622] Mem abort info: [ 2430.649829] ESR = 0x96000004 [ 2430.650115] EC = 0x25: DABT (current EL), IL = 32 bits [ 2430.650564] SET = 0, FnV = 0 [ 2430.650795] EA = 0, S1PTW = 0 [ 2430.651032] FSC = 0x04: level 0 translation fault [ 2430.651446] Data abort info: [ 2430.651683] ISV = 0, ISS = 0x00000004 [ 2430.652001] CM = 0, WnR = 0 [ 2430.652558] [0069696969696948] address between user and kernel address ranges [ 2430.653265] Internal error: Oops: 96000004 [#1] PREEMPT SMP [ 2430.654512] CPU: 2 PID: 20919 Comm: cat Not tainted 5.15.25-g512f31242bf6 #33 [ 2430.655008] Hardware name: linux,dummy-virt (DT) [ 2430.655517] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 2430.656142] pc : kfree+0x78/0x348 [ 2430.656630] lr : jffs2_free_inode+0x24/0x48 [ 2430.657051] sp : ffff800009eebd10 [ 2430.657355] x29: ffff800009eebd10 x28: 0000000000000001 x27: 0000000000000000 [ 2430.658327] x26: ffff000038f09d80 x25: 0080000000000000 x24: ffff800009d38000 [ 2430.658919] x23: 5a5a5a5a5a5a5a5a x22: ffff000038f09d80 x21: ffff8000084f0d14 [ 2430.659434] x20: ffff0000bf9a6ac0 x19: 0169696969696940 x18: 0000000000000000 [ 2430.659969] x17: ffff8000b6506000 x16: ffff800009eec000 x15: 0000000000004000 [ 2430.660637] x14: 0000000000000000 x13: 00000001000820a1 x12: 00000000000d1b19 [ 2430.661345] x11: 0004000800000000 x10: 0000000000000001 x9 : ffff8000084f0d14 [ 2430.662025] x8 : ffff0000bf9a6b40 x7 : ffff0000bf9a6b48 x6 : 0000000003470302 [ 2430.662695] x5 : ffff00002e41dcc0 x4 : ffff0000bf9aa3b0 x3 : 0000000003470342 [ 2430.663486] x2 : 0000000000000000 x1 : ffff8000084f0d14 x0 : fffffc0000000000 [ 2430.664217] Call trace: [ 2430.664528] kfree+0x78/0x348 [ 2430.664855] jffs2_free_inode+0x24/0x48 [ 2430.665233] i_callback+0x24/0x50 [ 2430.665528] rcu_do_batch+0x1ac/0x448 [ 2430.665892] rcu_core+0x28c/0x3c8 [ 2430.666151] rcu_core_si+0x18/0x28 [ 2430.666473] __do_softirq+0x138/0x3cc [ 2430.666781] irq_exit+0xf0/0x110 [ 2430.667065] handle_domain_irq+0x6c/0x98 [ 2430.667447] gic_handle_irq+0xac/0xe8 [ 2430.667739] call_on_irq_stack+0x28/0x54 The parameter passed to kfree was 5a5a5a5a, which corresponds to the target field of the jffs_inode_info structure. It was found that all variables in the jffs_inode_info structure were 5a5a5a5a, except for the first member sem. It is suspected that these variables are not initialized because they were set to 5a5a5a5a during memory testing, which is meant to detect uninitialized memory.The sem variable is initialized in the function jffs2_i_init_once, while other members are initialized in the function jffs2_init_inode_info. The function jffs2_init_inode_info is called after iget_locked, but in the iget_locked function, the destroy_inode process is triggered, which releases the inode and consequently, the target member of the inode is not initialized.In concurrent high pressure scenarios, iget_locked may enter the destroy_inode branch as described in the code. Since the destroy_inode functionality of jffs2 only releases the target, the fix method is to set target to NULL in jffs2_i_init_once. Signed-off-by: Wang Yong <[email protected]> Reviewed-by: Lu Zhongjun <[email protected]> Reviewed-by: Yang Tao <[email protected]> Cc: Xu Xin <[email protected]> Cc: Yang Yang <[email protected]> Signed-off-by: Richard Weinberger <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Nov 25, 2024
Accessing `mr_table->mfc_cache_list` is protected by an RCU lock. In the following code flow, the RCU read lock is not held, causing the following error when `RCU_PROVE` is not held. The same problem might show up in the IPv6 code path. 6.12.0-rc5-kbuilder-01145-gbac17284bdcb #33 Tainted: G E N ----------------------------- net/ipv4/ipmr_base.c:313 RCU-list traversed in non-reader section!! rcu_scheduler_active = 2, debug_locks = 1 2 locks held by RetransmitAggre/3519: #0: ffff88816188c6c0 (nlk_cb_mutex-ROUTE){+.+.}-{3:3}, at: __netlink_dump_start+0x8a/0x290 #1: ffffffff83fcf7a8 (rtnl_mutex){+.+.}-{3:3}, at: rtnl_dumpit+0x6b/0x90 stack backtrace: lockdep_rcu_suspicious mr_table_dump ipmr_rtm_dumproute rtnl_dump_all rtnl_dumpit netlink_dump __netlink_dump_start rtnetlink_rcv_msg netlink_rcv_skb netlink_unicast netlink_sendmsg This is not a problem per see, since the RTNL lock is held here, so, it is safe to iterate in the list without the RCU read lock, as suggested by Eric. To alleviate the concern, modify the code to use list_for_each_entry_rcu() with the RTNL-held argument. The annotation will raise an error only if RTNL or RCU read lock are missing during iteration, signaling a legitimate problem, otherwise it will avoid this false positive. This will solve the IPv6 case as well, since ip6mr_rtm_dumproute() calls this function as well. Signed-off-by: Breno Leitao <[email protected]> Reviewed-by: David Ahern <[email protected]> Link: https://patch.msgid.link/[email protected] Signed-off-by: Jakub Kicinski <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Dec 8, 2024
[ Upstream commit e28acc9 ] Accessing `mr_table->mfc_cache_list` is protected by an RCU lock. In the following code flow, the RCU read lock is not held, causing the following error when `RCU_PROVE` is not held. The same problem might show up in the IPv6 code path. 6.12.0-rc5-kbuilder-01145-gbac17284bdcb #33 Tainted: G E N ----------------------------- net/ipv4/ipmr_base.c:313 RCU-list traversed in non-reader section!! rcu_scheduler_active = 2, debug_locks = 1 2 locks held by RetransmitAggre/3519: #0: ffff88816188c6c0 (nlk_cb_mutex-ROUTE){+.+.}-{3:3}, at: __netlink_dump_start+0x8a/0x290 #1: ffffffff83fcf7a8 (rtnl_mutex){+.+.}-{3:3}, at: rtnl_dumpit+0x6b/0x90 stack backtrace: lockdep_rcu_suspicious mr_table_dump ipmr_rtm_dumproute rtnl_dump_all rtnl_dumpit netlink_dump __netlink_dump_start rtnetlink_rcv_msg netlink_rcv_skb netlink_unicast netlink_sendmsg This is not a problem per see, since the RTNL lock is held here, so, it is safe to iterate in the list without the RCU read lock, as suggested by Eric. To alleviate the concern, modify the code to use list_for_each_entry_rcu() with the RTNL-held argument. The annotation will raise an error only if RTNL or RCU read lock are missing during iteration, signaling a legitimate problem, otherwise it will avoid this false positive. This will solve the IPv6 case as well, since ip6mr_rtm_dumproute() calls this function as well. Signed-off-by: Breno Leitao <[email protected]> Reviewed-by: David Ahern <[email protected]> Link: https://patch.msgid.link/[email protected] Signed-off-by: Jakub Kicinski <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Dec 9, 2024
[ Upstream commit e28acc9 ] Accessing `mr_table->mfc_cache_list` is protected by an RCU lock. In the following code flow, the RCU read lock is not held, causing the following error when `RCU_PROVE` is not held. The same problem might show up in the IPv6 code path. 6.12.0-rc5-kbuilder-01145-gbac17284bdcb #33 Tainted: G E N ----------------------------- net/ipv4/ipmr_base.c:313 RCU-list traversed in non-reader section!! rcu_scheduler_active = 2, debug_locks = 1 2 locks held by RetransmitAggre/3519: #0: ffff88816188c6c0 (nlk_cb_mutex-ROUTE){+.+.}-{3:3}, at: __netlink_dump_start+0x8a/0x290 #1: ffffffff83fcf7a8 (rtnl_mutex){+.+.}-{3:3}, at: rtnl_dumpit+0x6b/0x90 stack backtrace: lockdep_rcu_suspicious mr_table_dump ipmr_rtm_dumproute rtnl_dump_all rtnl_dumpit netlink_dump __netlink_dump_start rtnetlink_rcv_msg netlink_rcv_skb netlink_unicast netlink_sendmsg This is not a problem per see, since the RTNL lock is held here, so, it is safe to iterate in the list without the RCU read lock, as suggested by Eric. To alleviate the concern, modify the code to use list_for_each_entry_rcu() with the RTNL-held argument. The annotation will raise an error only if RTNL or RCU read lock are missing during iteration, signaling a legitimate problem, otherwise it will avoid this false positive. This will solve the IPv6 case as well, since ip6mr_rtm_dumproute() calls this function as well. Signed-off-by: Breno Leitao <[email protected]> Reviewed-by: David Ahern <[email protected]> Link: https://patch.msgid.link/[email protected] Signed-off-by: Jakub Kicinski <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Dec 17, 2024
[ Upstream commit e28acc9 ] Accessing `mr_table->mfc_cache_list` is protected by an RCU lock. In the following code flow, the RCU read lock is not held, causing the following error when `RCU_PROVE` is not held. The same problem might show up in the IPv6 code path. 6.12.0-rc5-kbuilder-01145-gbac17284bdcb #33 Tainted: G E N ----------------------------- net/ipv4/ipmr_base.c:313 RCU-list traversed in non-reader section!! rcu_scheduler_active = 2, debug_locks = 1 2 locks held by RetransmitAggre/3519: #0: ffff88816188c6c0 (nlk_cb_mutex-ROUTE){+.+.}-{3:3}, at: __netlink_dump_start+0x8a/0x290 #1: ffffffff83fcf7a8 (rtnl_mutex){+.+.}-{3:3}, at: rtnl_dumpit+0x6b/0x90 stack backtrace: lockdep_rcu_suspicious mr_table_dump ipmr_rtm_dumproute rtnl_dump_all rtnl_dumpit netlink_dump __netlink_dump_start rtnetlink_rcv_msg netlink_rcv_skb netlink_unicast netlink_sendmsg This is not a problem per see, since the RTNL lock is held here, so, it is safe to iterate in the list without the RCU read lock, as suggested by Eric. To alleviate the concern, modify the code to use list_for_each_entry_rcu() with the RTNL-held argument. The annotation will raise an error only if RTNL or RCU read lock are missing during iteration, signaling a legitimate problem, otherwise it will avoid this false positive. This will solve the IPv6 case as well, since ip6mr_rtm_dumproute() calls this function as well. Signed-off-by: Breno Leitao <[email protected]> Reviewed-by: David Ahern <[email protected]> Link: https://patch.msgid.link/[email protected] Signed-off-by: Jakub Kicinski <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Dec 17, 2024
[ Upstream commit e28acc9 ] Accessing `mr_table->mfc_cache_list` is protected by an RCU lock. In the following code flow, the RCU read lock is not held, causing the following error when `RCU_PROVE` is not held. The same problem might show up in the IPv6 code path. 6.12.0-rc5-kbuilder-01145-gbac17284bdcb #33 Tainted: G E N ----------------------------- net/ipv4/ipmr_base.c:313 RCU-list traversed in non-reader section!! rcu_scheduler_active = 2, debug_locks = 1 2 locks held by RetransmitAggre/3519: #0: ffff88816188c6c0 (nlk_cb_mutex-ROUTE){+.+.}-{3:3}, at: __netlink_dump_start+0x8a/0x290 #1: ffffffff83fcf7a8 (rtnl_mutex){+.+.}-{3:3}, at: rtnl_dumpit+0x6b/0x90 stack backtrace: lockdep_rcu_suspicious mr_table_dump ipmr_rtm_dumproute rtnl_dump_all rtnl_dumpit netlink_dump __netlink_dump_start rtnetlink_rcv_msg netlink_rcv_skb netlink_unicast netlink_sendmsg This is not a problem per see, since the RTNL lock is held here, so, it is safe to iterate in the list without the RCU read lock, as suggested by Eric. To alleviate the concern, modify the code to use list_for_each_entry_rcu() with the RTNL-held argument. The annotation will raise an error only if RTNL or RCU read lock are missing during iteration, signaling a legitimate problem, otherwise it will avoid this false positive. This will solve the IPv6 case as well, since ip6mr_rtm_dumproute() calls this function as well. Signed-off-by: Breno Leitao <[email protected]> Reviewed-by: David Ahern <[email protected]> Link: https://patch.msgid.link/[email protected] Signed-off-by: Jakub Kicinski <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Dec 17, 2024
[ Upstream commit e28acc9 ] Accessing `mr_table->mfc_cache_list` is protected by an RCU lock. In the following code flow, the RCU read lock is not held, causing the following error when `RCU_PROVE` is not held. The same problem might show up in the IPv6 code path. 6.12.0-rc5-kbuilder-01145-gbac17284bdcb #33 Tainted: G E N ----------------------------- net/ipv4/ipmr_base.c:313 RCU-list traversed in non-reader section!! rcu_scheduler_active = 2, debug_locks = 1 2 locks held by RetransmitAggre/3519: #0: ffff88816188c6c0 (nlk_cb_mutex-ROUTE){+.+.}-{3:3}, at: __netlink_dump_start+0x8a/0x290 #1: ffffffff83fcf7a8 (rtnl_mutex){+.+.}-{3:3}, at: rtnl_dumpit+0x6b/0x90 stack backtrace: lockdep_rcu_suspicious mr_table_dump ipmr_rtm_dumproute rtnl_dump_all rtnl_dumpit netlink_dump __netlink_dump_start rtnetlink_rcv_msg netlink_rcv_skb netlink_unicast netlink_sendmsg This is not a problem per see, since the RTNL lock is held here, so, it is safe to iterate in the list without the RCU read lock, as suggested by Eric. To alleviate the concern, modify the code to use list_for_each_entry_rcu() with the RTNL-held argument. The annotation will raise an error only if RTNL or RCU read lock are missing during iteration, signaling a legitimate problem, otherwise it will avoid this false positive. This will solve the IPv6 case as well, since ip6mr_rtm_dumproute() calls this function as well. Signed-off-by: Breno Leitao <[email protected]> Reviewed-by: David Ahern <[email protected]> Link: https://patch.msgid.link/[email protected] Signed-off-by: Jakub Kicinski <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
anthraxx
pushed a commit
that referenced
this pull request
Dec 17, 2024
[ Upstream commit e28acc9 ] Accessing `mr_table->mfc_cache_list` is protected by an RCU lock. In the following code flow, the RCU read lock is not held, causing the following error when `RCU_PROVE` is not held. The same problem might show up in the IPv6 code path. 6.12.0-rc5-kbuilder-01145-gbac17284bdcb #33 Tainted: G E N ----------------------------- net/ipv4/ipmr_base.c:313 RCU-list traversed in non-reader section!! rcu_scheduler_active = 2, debug_locks = 1 2 locks held by RetransmitAggre/3519: #0: ffff88816188c6c0 (nlk_cb_mutex-ROUTE){+.+.}-{3:3}, at: __netlink_dump_start+0x8a/0x290 #1: ffffffff83fcf7a8 (rtnl_mutex){+.+.}-{3:3}, at: rtnl_dumpit+0x6b/0x90 stack backtrace: lockdep_rcu_suspicious mr_table_dump ipmr_rtm_dumproute rtnl_dump_all rtnl_dumpit netlink_dump __netlink_dump_start rtnetlink_rcv_msg netlink_rcv_skb netlink_unicast netlink_sendmsg This is not a problem per see, since the RTNL lock is held here, so, it is safe to iterate in the list without the RCU read lock, as suggested by Eric. To alleviate the concern, modify the code to use list_for_each_entry_rcu() with the RTNL-held argument. The annotation will raise an error only if RTNL or RCU read lock are missing during iteration, signaling a legitimate problem, otherwise it will avoid this false positive. This will solve the IPv6 case as well, since ip6mr_rtm_dumproute() calls this function as well. Signed-off-by: Breno Leitao <[email protected]> Reviewed-by: David Ahern <[email protected]> Link: https://patch.msgid.link/[email protected] Signed-off-by: Jakub Kicinski <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Labels
PR needs rebase
Indicates that the pull request needs to do maintenance and rebase against master
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Log the access to SUID. The display format is as follows:
[ 9.799423] linux-hardened: exim4 executed by the uid/euid:0/0 just used a SUID
[ 78.596654] linux-hardened: bash executed by the uid/euid:1000/1000 just used a SUID