-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
executable file
·1055 lines (939 loc) · 41.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import cv2
import tensorflow as tf
import sys
import glob
import random
import numpy as np
import tensorflow.keras.layers as layers
import math as m
from skimage.draw import line_aa
import matplotlib.tri as mtri
from scipy import ndimage, misc
from PIL import Image, ImageDraw
#arg_scope = tf.contrib.framework.arg_scope
_MAX_SS_SIGMA = 15 # control subsurface scattering strength # used to be 10
_MAX_BLUR_SIGMA = 12 # control spatially varying blur strength # used to be 10
_SV_SIGMA = 0.5 # 1. --> not sv blur on boudary; 0. -> always sv blur
lm_list = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,32,33,34,35,36,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,6,7,8,9,10,11,12,59,58,57,8,9,10,6,7,8,9,10,11,12,59,58,57,8,9,10,6,7,8,9,10,11,12,59,58,57]
def l1_loss(x, y, mask=None):
xshape = x.shape
if mask is not None:
#loss = tf.math.reduce_mean(tf.reshape(tf.abs(tf.subtract(x, y)), [xshape[0], -1]), axis=1)
loss = tf.math.reduce_sum(tf.abs(x-y) * mask) / (tf.reduce_sum(mask) + 1e-6) / x.shape[3]
else:
loss = tf.math.reduce_mean(tf.abs(x-y))
return loss
def l1_loss_yuv(x, y, mask=None):
pi = tf.constant(m.pi)
xshape = x.shape
#rx, gx, bx = tf.split(tf.reverse(x, axis=[-1]),3, axis=3)
#ry, gy, by = tf.split(tf.reverse(y, axis=[-1]),3, axis=3)
rx, gx, bx = tf.split(x, 3, axis=3)
ry, gy, by = tf.split(y, 3, axis=3)
yx = rx * .299000 + gx * .587000 + bx * .114000
ux = rx * -.168736 + gx * -.331264 + bx * .500000
vx = rx * .500000 + gx * -.418688 + bx * -.081312
yy = ry * .299000 + gy * .587000 + by * .114000
uy = ry * -.168736 + gy * -.331264 + by * .500000
vy = ry * .500000 + gy * -.418688 + by * -.081312
if mask is not None:
y_loss = tf.math.reduce_sum(tf.abs(yx-yy) * mask) / (tf.reduce_sum(mask) + 1e-6)
u_loss = tf.math.reduce_sum(tf.abs(ux-uy) * mask) / (tf.reduce_sum(mask) + 1e-6)
v_loss = tf.math.reduce_sum(tf.abs(vx-vy) * mask) / (tf.reduce_sum(mask) + 1e-6)
else:
y_loss = tf.math.reduce_mean(tf.abs(yx-yy))
u_loss = tf.math.reduce_mean(tf.abs(ux-uy))
v_loss = tf.math.reduce_mean(tf.abs(vx-vy))
return (y_loss+u_loss+v_loss)/2
def l1_loss_hsv(x, y, mask=None):
pi = tf.constant(m.pi)
xshape = x.shape
hx, sx, vx = tf.split(tf.image.rgb_to_hsv(tf.reverse(x, axis=[-1])),3, axis=3)
hy, sy, vy = tf.split(tf.image.rgb_to_hsv(tf.reverse(y, axis=[-1])),3, axis=3)
if mask is not None:
h_loss = tf.math.reduce_sum(tf.abs(tf.cos(2*pi*hx) - tf.cos(2*pi*hy))* mask)/ (tf.reduce_sum(mask) + 1e-6)
s_loss = tf.math.reduce_sum(tf.abs(sx-sy) * mask) / (tf.reduce_sum(mask) + 1e-6)
v_loss = tf.math.reduce_sum(tf.abs(vx-vy) * mask) / (tf.reduce_sum(mask) + 1e-6)
else:
h_loss = tf.math.reduce_mean(tf.abs(tf.cos(2*pi*hx) - tf.cos(2*pi*hy)))
s_loss = tf.math.reduce_mean(tf.abs(sx-sy))
v_loss = tf.math.reduce_mean(tf.abs(vx-vy))
return (h_loss+v_loss)/2 #(+s_loss+v_loss)/3
def l2_loss(x, y, mask=None):
xshape = x.shape
if mask is not None:
loss = tf.math.reduce_sum(tf.square(tf.subtract(x, y)) * mask) / (tf.reduce_sum(mask) + 1e-6) / x.shape[3]
else:
loss = tf.math.reduce_mean(tf.square(tf.subtract(x, y)))
return loss
def l2_loss_yuv(x, y, mask=None):
pi = tf.constant(m.pi)
xshape = x.shape
#rx, gx, bx = tf.split(tf.reverse(x, axis=[-1]),3, axis=3)
#ry, gy, by = tf.split(tf.reverse(y, axis=[-1]),3, axis=3)
rx, gx, bx = tf.split(x, 3, axis=3)
ry, gy, by = tf.split(y, 3, axis=3)
yx = rx * .299000 + gx * .587000 + bx * .114000
ux = rx * -.168736 + gx * -.331264 + bx * .500000
vx = rx * .500000 + gx * -.418688 + bx * -.081312
yy = ry * .299000 + gy * .587000 + by * .114000
uy = ry * -.168736 + gy * -.331264 + by * .500000
vy = ry * .500000 + gy * -.418688 + by * -.081312
if mask is not None:
y_loss = tf.math.reduce_sum(tf.square(tf.subtract(yx, yy)) * mask) / (tf.reduce_sum(mask) + 1e-6)
u_loss = tf.math.reduce_sum(tf.square(tf.subtract(ux, uy)) * mask) / (tf.reduce_sum(mask) + 1e-6)
v_loss = tf.math.reduce_sum(tf.square(tf.subtract(vx, vy)) * mask) / (tf.reduce_sum(mask) + 1e-6)
else:
y_loss = tf.math.reduce_mean(tf.square(tf.subtract(yx, yy)))
u_loss = tf.math.reduce_mean(tf.square(tf.subtract(ux, uy)))
v_loss = tf.math.reduce_mean(tf.square(tf.subtract(vx, vy)))
return (y_loss+u_loss+v_loss)/2
def hinge_loss(y_pred, y_true, mask=None):
#y_pred = tf.reshape(y_pred,[y_pred.shape[0], -1])
return tf.math.reduce_mean(tf.math.maximum(0., 1. - y_true*y_pred))
def style_content_loss(func, inputs):
inputs = tf.keras.applications.vgg19.preprocess_input(inputs*255)
style_outputs = func(inputs)
#style_outputs = func(inputs * 255)
style_loss = 0
style_weight = [1.,1.,1.,1.,1.]
#style_weight = [1.0/2.6, 1.0/4.8, 1.0/3.7, 1/5.6, 6.67]
for feat, w in zip(style_outputs, style_weight):
real, fake = tf.split(feat, 2, axis=0)
style_loss += w* tf.reduce_mean(tf.abs(real-fake))
return style_loss
def find_edge(mask):
edge = tf.cast(tf.greater(tf.reduce_mean(mask, axis=3, keepdims=True), .01), tf.float32) - tf.cast(tf.greater(tf.reduce_min(mask, axis=3, keepdims=True), .3), tf.float32)
rep = 2
#rep = 3
kernel = tf.ones((5,5,1))
#kernel = tf.ones((7,7,1))
for _ in range(rep):
edge = tf.nn.dilation2d(edge, kernel, [1,1,1,1], 'SAME', 'NHWC', [1,1,1,1])
edge -= tf.ones_like(edge)
return tf.cast(tf.greater(edge, 0.), tf.float32)
class Logging(object):
def __init__(self, config):
self.config = config
self.losses = {}
self.losses_val = {}
self.txt = ''
self.fig = []
self.fig_val = []
def update(self, losses, training):
if training:
for name in losses.keys():
if name in self.losses:
current_loss = self.losses[name]
self.losses[name] = [current_loss[0]+losses[name], current_loss[1]+1]
else:
self.losses[name] = [losses[name], 1]
else:
for name in losses.keys():
if name in self.losses_val:
current_loss = self.losses_val[name]
self.losses_val[name] = [current_loss[0]+losses[name].numpy(), current_loss[1]+1]
else:
self.losses_val[name] = [losses[name].numpy(), 1]
def display(self, losses, epoch, step, training, allstep):
self.update(losses, training)
if training:
text = 'Epoch (Train) '+str(epoch+1)+'-'+str(step+1)+'/'+str(allstep) + ': '
for _name in self.losses.keys():
value = self.losses[_name]
text += _name+':'+"{:.3g}".format(value[0]/value[1])+', '
else:
text = 'Epoch ( Val ) '+str(epoch+1)+'-'+str(step+1)+'/'+str(allstep) + ': '
for _name in self.losses_val.keys():
value = self.losses_val[_name]
text += _name+':'+"{:.3g}".format(value[0]/value[1])+', '
text = text[:-2]+' '
# display loss
print(text, end='\n')
#print(text, end='\r')
self.txt = text
self.epoch = epoch
self.step = step
def save(self, fig, training):
config = self.config
step = self.step
fig = self.get_figures(fig)
if training:
if step % config.IMG_LOG_FR == 0:
fname = config.CHECKPOINT_DIR + '/epoch-' + str(self.epoch+1) + '-Train-' + str(self.step+1) + '.png'
cv2.imwrite(fname, fig.numpy())
if step % config.TXT_LOG_FR == 0:
file_object = open(config.CHECKPOINT_DIR+'/log.txt', 'a')
file_object.write(self.txt+'\n')
file_object.close()
else:
if step % (config.IMG_LOG_FR//10) == 0:
fname = config.CHECKPOINT_DIR + '/epoch-' + str(self.epoch+1) + '-Val-' + str(self.step+1) + '.png'
cv2.imwrite(fname, fig.numpy())
if step % (config.TXT_LOG_FR//10) == 0:
file_object = open(config.CHECKPOINT_DIR+'/log.txt', 'a')
file_object.write(self.txt+'\n')
file_object.close()
self.fig = []
self.fig_val = []
def save_img(self, fig, fname):
config = self.config
step = self.step
fig = self.get_imgs(fig,256)
fname = config.CHECKPOINT_DIR+'/test/'+fname.split('/')[-2]+'_'+fname.split('/')[-1].split('.')[0]+'-result.png'
print(fname)
cv2.imwrite(fname, fig.numpy())
self.fig = []
self.fig_val = []
def reset(self):
losses = {}
losses_val = {}
ind = 0
for _name in self.loss_names:
self.losses[_name] = [0, 0]
self.losses_val[_name] = [0, 0]
ind += 1
self.txt = ''
self.img = 0
def get_imgs(self, fig, size=None):
config = self.config
column = []
for _img in fig:
_img = tf.clip_by_value(_img, 0.0, 1.0)*255
if _img.shape[3] == 1:
_img = tf.concat([_img, _img, _img], axis=3)
else:
r, g, b = tf.split(_img[:,:,:,:3], 3, 3)
_img = tf.concat([b,g,r], 3)
if size is None:
_img = tf.image.resize(_img, [config.FIG_SIZE, config.FIG_SIZE])
else:
_img = tf.image.resize(_img, [config.IMG_SIZE, config.IMG_SIZE])
column.append(_img[0,:,:,:])
column = tf.concat(column, axis=1)
return column
def get_figures(self, fig, size=None):
config = self.config
column = []
for _img in fig:
_img = tf.clip_by_value(_img, 0.0, 1.0)*255
if _img.shape[3] == 1:
_img = tf.concat([_img, _img, _img], axis=3)
else:
r, g, b = tf.split(_img[:,:,:,:3], 3, 3)
_img = tf.concat([b,g,r], 3)
if size is None:
_img = tf.image.resize(_img, [config.FIG_SIZE, config.FIG_SIZE])
else:
_img = tf.image.resize(_img, [config.IMG_SIZE, config.IMG_SIZE])
_row = tf.split(_img, _img.shape[0])
_row = tf.concat(_row, axis=2)
column.append(_row[0,:,:,:])
column = tf.concat(column, axis=0)
return column
def generate_face_region(source, img_size):
morelm = np.copy(source[0:17,:])
morelm[:,1] = morelm[0,1] - (morelm[:,1] - morelm[0,1]) * 0.8
source = np.concatenate([source,morelm],axis=0)
'''
img = Image.new('L', (img_size, img_size), 0)
ImageDraw.Draw(img).polygon(source, outline=1, fill=1)
mask = np.array(img)
mask = cv2.GaussianBlur(mask,(5,5),0).reshape([img_size,img_size,1])
'''
xi, yi = np.meshgrid(np.linspace(0, 1, img_size), np.linspace(0, 1, img_size))
# interp2d
_triang = mtri.Triangulation(source[:,0], source[:,1])
_interpx = mtri.LinearTriInterpolator(_triang, source[:,0])
_offsetmapx = _interpx(xi, yi)
offsetmap = np.stack([_offsetmapx], axis=2)
offsetmap = np.nan_to_num(offsetmap)
offsetmap = np.asarray(offsetmap>0,np.float32)
offsetmap = cv2.GaussianBlur(offsetmap,(5,5),0).reshape([img_size,img_size,1])
return offsetmap
def generate_face_region2(source, imx, imy):
morelm = np.copy(source[0:17,:])
morelm[:,1] = morelm[0,1] - (morelm[:,1] - morelm[0,1]) * 0.6
source = np.concatenate([source,morelm],axis=0)
xi, yi = np.meshgrid(np.linspace(0, 1, imx), np.linspace(0, 1, imy))
# interp2d
_triang = mtri.Triangulation(source[:,0], source[:,1])
_interpx = mtri.LinearTriInterpolator(_triang, source[:,0])
_offsetmapx = _interpx(xi, yi)
offsetmap = np.stack([_offsetmapx], axis=2)
offsetmap = np.nan_to_num(offsetmap)
offsetmap = np.asarray(offsetmap>0,np.float32)
offsetmap = cv2.blur(offsetmap,(45,45),0).reshape([imy,imx,1])
offsetmap = offsetmap / (np.max(offsetmap)+1e-6)
return offsetmap
def generate_landmark_map(landmark, img_size):
lmlist = [[1,2],[2,3],[3,4],[4,5],[5,6],[6,7],[7,8],[8,9],[9,10],[10,11],[11,12],[12,13],[13,14],[14,15],[15,16],[16,17],
[18,19],[19,20],[20,21],[21,22],[23,24],[24,25],[25,26],[26,27],
[37,38],[38,39],[39,40],[40,41],[41,42],[42,37],[43,44],[44,45],[45,46],[46,47],[47,48],[48,43],
[28,29],[29,30],[30,31],[32,33],[33,34],[34,35],[35,36],
[49,50],[50,51],[51,52],[52,53],[53,54],[54,55],[55,56],[56,57],[57,58],[58,59],[59,60],[60,49],
[61,62],[62,63],[63,64],[64,65],[65,66],[66,67],[67,68],[68,61]]
lm_map = []
img = np.zeros((img_size, img_size), dtype=np.uint8)
lm = landmark*img_size
for pr in lmlist:
lm_start = lm[pr[0]-1,:].astype(np.int32)
lm_end = lm[pr[1]-1,:].astype(np.int32)
rr, cc, val = line_aa(lm_start[0], lm_start[1], lm_end[0], lm_end[1])
templist = [t for t in range(len(rr)) if rr[t] < img_size and rr[t] > 0 ]
rr = rr[templist]
cc = cc[templist]
val = val[templist]
templist = [t for t in range(len(cc)) if cc[t] < img_size and cc[t] > 0 ]
rr = rr[templist]
cc = cc[templist]
val = val[templist]
img[cc, rr] = val * 255
blur = cv2.GaussianBlur(img,(3,3),0)
blur = blur / np.amax(blur) * 255
lm_map = np.reshape(blur, [blur.shape[0], blur.shape[1], 1])
return lm_map
def list_concat(a,b):
c = []
for ia, ib in zip(a,b):
ic = tf.concat([ia,ib], axis=0)
c.append(ic)
return c
def list_split(a, num):
b = []
c = []
for ia in a:
ib, ic = tf.split(ia, num, axis=0)
b.append(ib)
c.append(ic)
return b, c
def pts_load(path):
with open(path) as f:
rows = [rows.strip() for rows in f]
"""Use the curly braces to find the start and end of the point data"""
head = rows.index('{') + 1
tail = rows.index('}')
"""Select the point data split into coordinates"""
raw_points = rows[head:tail]
coords_set = [point.split() for point in raw_points]
"""Convert entries from lists of strings to tuples of floats"""
points = [tuple([float(point) for point in coords]) for coords in coords_set]
return np.asarray(points, dtype=np.float32)
def face_crop_and_resize(img0, lm0, fsize, box_perturb=[1.15, 1.25], aug=False):
img = np.copy(img0)
lm = np.copy(lm0)
img_shape = img.shape
lm_reverse_list = np.array([17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,
27,26,25,24,23,22,21,20,19,18,
28,29,30,31,36,35,34,33,32,
46,45,44,43,48,47,40,39,38,37,42,41,
55,54,53,52,51,50,49,60,59,58,57,56,65,64,63,62,61,68,67,66],np.int32) -1
if aug and random.uniform(0,1)>0.5:
#img = cv2.flip(img, 1)
#lm[:,0] = img_shape[1] - lm[:,0]
#lm = lm[lm_reverse_list,:]
# rotate
rot = np.random.uniform(low=-10, high=10)
sin_rot = np.sin(rot * np.pi / 180.)
cos_rot = np.cos(rot * np.pi / 180.)
lm_new = np.copy(lm)
w, h, _ = img.shape
lm[:,0] -= h/2
lm[:,1] -= w/2
lm_new[:,0] = lm[:,1] * sin_rot + lm[:,0] * cos_rot
lm_new[:,1] = lm[:,1] * cos_rot - lm[:,0] * sin_rot
lm_new[:,0] += h/2
lm_new[:,1] += w/2
img = ndimage.rotate(img, rot, reshape=False)
lm = np.copy(lm_new)
lm_mirror = np.copy(lm)
lm_mirror[:,0] = img_shape[1] - lm_mirror[:,0]
lm_mirror = lm_mirror[lm_reverse_list,:]
center = [(np.min(lm[:,0])+np.max(lm[:,0]))/2, (np.min(lm[:,1])+np.max(lm[:,1]))/2]
length = np.max([(np.max(lm[:,0])-np.min(lm[:,0]))/2, (np.max(lm[:,1])-np.min(lm[:,1]))/2]) * 1.4
if aug:
center[0] = center[0] + random.uniform(-0.1,0.1)*length
center[1] = center[1] + random.uniform(-0.1,0.1)*length
length = length * random.uniform(0.9,1.1)
box = [int(center[0])-int(length),
int(center[1])-int(length*1.2),
int(center[0])+int(length),
int(center[1])+int(length)+int(length)-int(length*1.2)]
box0 = [int(center[0])-int(length),
int(center[1])-int(length*1.2),
int(center[0])+int(length),
int(center[1])+int(length)+int(length)-int(length*1.2)]
#print(box, img.shape)
box_m = [img_shape[1] - box[2],
box[1],
img_shape[1] - box[0],
box[3]]
lm[:,0] = lm[:,0] - box[0]
lm[:,1] = lm[:,1] - box[1]
lm_mirror[:,0] = lm_mirror[:,0] - box_m[0]
lm_mirror[:,1] = lm_mirror[:,1] - box_m[1]
preset_x = 0
preset_y = 0
if box[0] < 0 or box[2] > img_shape[1]:
preset_x = max(-box[0], box[2] - img_shape[1])
if box[1] < 0 or box[3] > img_shape[0]:
preset_y = max(-box[1], box[3] - img_shape[0])
if preset_x > 0 or preset_y > 0:
img_large= np.zeros((img_shape[0]+preset_y+preset_y+2,img_shape[1]+preset_x+preset_x+2,img_shape[2]))
img_large[preset_y:preset_y+int(img_shape[0]),preset_x:preset_x+int(img_shape[1]),:] = img
img = img_large
box[0] = box[0] + preset_x
box[1] = box[1] + preset_y
box[2] = box[2] + preset_x
box[3] = box[3] + preset_y
img = img[box[1]:box[3],box[0]:box[2],:]
sz = img.shape[0]
if img.shape[0] == img.shape[1] and img.shape[0]>0:
img = cv2.resize(img, (fsize,fsize))
else:
img = np.zeros((fsize, fsize, img.shape[2]))
return img, lm/(length*2), lm_mirror/(length*2), box0
"""
Color jitter
"""
def getbias(x, bias):
"""Bias in Ken Perlin’s bias and gain functions."""
return x / ((1.0 / bias - 2.0) * (1.0 - x) + 1.0 + 1e-6)
def apply_tone_curve(image, gain=(0.5, 0.5, 0.5), is_rgb=False):
"""Apply tone perturbation to images.
Tone curve jitter comes from Schlick's bias and gain.
Schlick, Christophe. "Fast alternatives to Perlin’s bias and gain functions." Graphics Gems IV 4 (1994).
Args:
image: a 3D image tensor [H, W, C].
gain: a tuple of length 3 that specifies the strength of the jitter per color channel.
is_rgb: a bool that indicates whether input is grayscale (C=1) or rgb (C=3).
Returns:
3D tensor applied with a tone curve jitter, has the same size as input.
"""
image_max = np.max(image)
image = (image / (image_max+1e-6)).astype(np.float32)
if not is_rgb:
mask = tf.cast(tf.greater_equal(image, 0.5), image.dtype)
image = getbias(image * 2.0, gain[0]) / 2.0 * (1.0 - mask) + (
getbias(image * 2.0 - 1.0, 1.0 - gain[0]) / 2.0 + 0.5) * mask
else:
image_r = image[..., 0]
image_r_mask = (image_r>0.499).astype(np.float32)
image_r = getbias(image_r * 2.0, gain[0]) / 2.0 * (1.0 - image_r_mask) + (
getbias(image_r * 2.0 - 1.0, 1.0 - gain[0]) / 2.0 + 0.5) * image_r_mask
image_g = image[..., 1]
image_g_mask = (image_g>0.499).astype(np.float32)
image_g = getbias(image_g * 2.0, gain[1]) / 2.0 * (1.0 - image_g_mask) + (
getbias(image_g * 2.0 - 1.0, 1.0 - gain[1]) / 2.0 + 0.5) * image_g_mask
image_b = image[..., 2]
image_b_mask = (image_b>0.499).astype(np.float32)
image_b = getbias(image_b * 2.0, gain[2]) / 2.0 * (1.0 - image_b_mask) + (
getbias(image_b * 2.0 - 1.0, 1.0 - gain[2]) / 2.0 + 0.5) * image_b_mask
image = np.stack([image_r, image_g, image_b], axis=2)
return image * image_max
def get_ctm_ls_inv(image, target):
"""Use least square to obtain color transfer matrix.
Args:
image: the source tensor of shape [H, W, 3].
target: target tensor with the same shape as input.
Returns:
tensor of size 3 by 3 that minimizes |C x image - target|_2.
"""
image = image.reshape(-1,3)
target = target.reshape(-1,3)
#ctm = tf.linalg.lstsq(image, target, l2_regularizer=0.0, fast=True)
ctm = np.linalg.lstsq(image, target, rcond=None)[0]
ctm_inv = np.linalg.lstsq(target, image, rcond=None)[0]
return ctm.T, ctm_inv.T
def get_ctm_ls(image, target):
"""Use least square to obtain color transfer matrix.
Args:
image: the source tensor of shape [H, W, 3].
target: target tensor with the same shape as input.
Returns:
tensor of size 3 by 3 that minimizes |C x image - target|_2.
"""
image = image.reshape(-1,3)
target = target.reshape(-1,3)
#ctm = tf.linalg.lstsq(image, target, l2_regularizer=0.0, fast=True)
ctm = np.linalg.lstsq(image, target, rcond=None)[0]
#ctm_inv = np.linalg.lstsq(target, image, rcond=None)[0]
return ctm.T#, ctm_inv.T
def apply_ctm(image, ctm):
"""Apply a color transfer matrix.
Args:
image: a tensor that contains the source image of shape [H, W, 3].
ctm: a tensor that contains a 3 by 3 color matrix.
Returns:
a tensor of the same shape as image.
"""
shape = image.shape
image = image.reshape(-1, 3)
image = np.tensordot(image, ctm, axes=[[-1], [-1]])
return image.reshape(shape)
def fft_filter(img, kernel):
"""Apply FFT to a 2D tensor.
Args:
img: a 2D tensor of the input image [H, W].
kernel: a 2D tensor of the kernel.
Returns:
a 2D tensor applied with a filter using FFT.
"""
with tf.name_scope('fft2d_gray'):
img = tf.cast(img, tf.complex64)
kernel = tf.cast(kernel, tf.complex64)
img_filtered = tf.cast(
tf.abs(tf.signal.ifft2d(tf.multiply(tf.signal.fft2d(img), tf.signal.fft2d(kernel)))),
tf.float32)
return img_filtered
def fft3_filter(img, kernel, is_rgb=True):
"""Apply FFT to a 3D tensor.
Args:
img: a 3D tensor of the input image [H, W, C].
kernel: a 2D tensor of the kernel.
is_rgb: a bool that indicates whether input is rgb or not.
Returns:
a filtered 3D tensor, has the same size as input.
"""
with tf.name_scope('fft2d_rgb'):
img = tf.cast(img, tf.complex64)
kernel = tf.cast(kernel, tf.complex64)
if not is_rgb:
img_r = fft_filter(img[..., 0], kernel)
img_r = tf.expand_dims(img_r, 2)
return img_r
else:
img_r = fft_filter(img[..., 0], kernel)
img_g = fft_filter(img[..., 1], kernel)
img_b = fft_filter(img[..., 2], kernel)
img_filtered = tf.stack([img_r, img_g, img_b], 2)
return img_filtered
def create_disc_filter(r):
"""Create a disc filter of radius r.
Args:
r: an int of the kernel radius.
Returns:
disk filter: A 2D Tensor
"""
x, y = tf.meshgrid(tf.range(-r, r + 1), tf.range(-r, r + 1))
mask = tf.less_equal(tf.pow(x, 2) + tf.pow(y, 2), tf.pow(r, 2))
mask = tf.cast(mask, tf.float32)
mask /= tf.reduce_sum(mask)
return mask
def apply_disc_filter(input_img, kernel_sz, is_rgb=True):
"""Apply disc filtering to the input image with a specified kernel size.
To handle large kernel sizes, this is operated (and thus approximated) in
frequency domain (fft).
Args:
input_img: a 2D or 3D tensor. [H, W, 1] or [H, W].
kernel_sz: a scalar tensor that specifies the disc kernel size.
is_rgb: a bool that indicates whether FFT is grayscale(c=1) or rgb(c=3).
Returns:
A Tensor after applied disc filter, has the same size as the input tensor.
"""
"""
if kernel_sz == 0:
print('Input kenrel size is 0.')
return input_img
"""
disc = create_disc_filter(kernel_sz)
offset = kernel_sz - 1
# if len(tf.shape(input_img)) == 2:
# padding_img = [[0, kernel_sz], [0, kernel_sz]]
# elif len(tf.shape(input_img)) == 3:
padding_img = [[0, kernel_sz], [0, kernel_sz], [0, 0]]
img_padded = tf.pad(input_img, padding_img, 'constant')
paddings = [[0, tf.shape(img_padded)[0] - tf.shape(disc)[0]],
[0, tf.shape(img_padded)[1] - tf.shape(disc)[1]]]
disc_padded = tf.pad(disc, paddings)
# if len(tf.shape(input_img)) == 2:
# img_blurred = fft_filter(
# img_padded, disc_padded)[offset:offset + tf.shape(input_img)[0],
# offset:offset + tf.shape(input_img)[1]]
# else:
img_blurred = fft3_filter(
img_padded, disc_padded,
is_rgb=is_rgb)[offset:offset + tf.shape(input_img)[0],
offset:offset + tf.shape(input_img)[1]]
return img_blurred
def render_shadow_from_mask(mask, segmentation=None):
"""Render a shadow mask by applying spatially-varying blur.
Args:
mask: A Tensor of shape [H, W, 1].
segmentation: face segmentation, apply to the generated shadow mask if provided.
Returns:
A Tensor of shape [H, W, 1] containing the shadow mask.
"""
mask = tf.expand_dims(mask, 2)
disc_filter_sz = tf.random.uniform(shape=(), minval=1, maxval=_MAX_BLUR_SIGMA, dtype=tf.int32)
mask_blurred = tf.cond(tf.greater(tf.random.uniform([]),tf.constant(_SV_SIGMA)),
lambda: apply_spatially_varying_blur(mask,
blur_size=tf.random.uniform(shape=(), minval=1, maxval=3, dtype=tf.int32)),
lambda: apply_disc_filter(mask, disc_filter_sz, is_rgb=False))
mask_blurred_norm = tf.divide(mask_blurred, tf.reduce_max(mask_blurred))
if segmentation is not None:
mask_blurred_seg = mask_blurred_norm * segmentation
else:
mask_blurred_seg = mask_blurred_norm
'''
tf.debugging.assert_greater_equal(
tf.reduce_sum(mask_blurred_seg),
0.1,
message='Rendered silhouette mask values too small.') # sample drops if this happens'''
return mask_blurred_norm
def render_perlin_mask(size, segmentation=None):
"""Render a shadow mask using perlin noise pattern.
Args:
size: A 2D tensor of target mask size.
segmentation: face segmentation, apply to the generated shadow mask if provided.
Returns:
A Tensor of shape [H, W, 1] containing the shadow mask.
"""
with tf.name_scope('render_perlin'):
size = tf.cast(size, tf.int32)
perlin_map = perlin_collection((size[0], size[1]), [4, 4], 4,
tf.random.uniform([], 0.05, 0.85))
perlin_map_thre = tf.cast(tf.greater(perlin_map, 0.15), tf.float32)
perlin_shadow_map = render_shadow_from_mask(
perlin_map_thre, segmentation=segmentation)
return perlin_shadow_map
def apply_ss_shadow_map(mask):
"""Apply subsurface scattering approximation to the shadow mask.
Args:
mask: A Tensor of shape [H, W, 1].
Returns:
A Tensor of shape [H, W, 3] that is applied with wavelength-dependent blur.
"""
r = tf.random.uniform(
shape=(), minval=1, maxval=_MAX_SS_SIGMA, dtype=tf.float32) # a global scalar to scale all the blur size
shadow_map = wavelength_filter(mask, num_lv=6, scale=r, is_rgb=False)
shadow_map = tf.minimum(1., shadow_map/0.6) # a heuristic scalar for more stable normalization
return shadow_map
def wavelength_filter(input_img, num_lv=6, scale=5, is_rgb=False, name='wavelength_filter'):
"""Image-based subsurface scattering approximation
Parameters from the NVIDIA screen-space subsurface scattering (SS) slide 98.
http://developer.download.nvidia.com/presentations/2007/gdc/Advanced_Skin.pdf
Args:
input_img: a 3D tensor [H, W, C].
num_lv: a scalar that specifies the number of Gaussian filter levels in the SS model.
scale: a scalar that is the scale used to calibrate the kernel size into # pixels based on the size of the face in the image.
is_rgb: a bool that indicates whether input is grayscale(c=1) or rgb(c=3).
name: string, name of the graph.
Returns:
A 3D tensor after approximated with subsurface scattering.
"""
with tf.name_scope(name):
scale = tf.cast(scale, tf.float32)
ss_weights = np.array([[0.042, 0.22, 0.437, 0.635],
[0.220, 0.101, 0.355, 0.365],
[0.433, 0.119, 0.208, 0],
[0.753, 0.114, 0, 0],
[1.412, 0.364, 0, 0],
[2.722, 0.080, 0, 0]])
ss_weights_norm = np.sum(ss_weights, 0)
img_blur_rgb = 0.
for lv in range(num_lv):
if lv != 0:
blur_kernel = ss_weights[lv, 0] * scale
else:
blur_kernel = ss_weights[lv, 0] * scale
rgb_weights = ss_weights[lv, 1:]
if not is_rgb:
blur_img = gaussian_filter(tf.expand_dims(input_img, 0), blur_kernel)[0]
blur_r = blur_img * rgb_weights[0] * tf.random.uniform([], 1.1, 1.5)
blur_g = blur_img * rgb_weights[1]
blur_b = blur_img * rgb_weights[2]
else:
blur_r = gaussian_filter(
tf.expand_dims(input_img[..., 0, tf.newaxis], 0),
blur_kernel)[0] * rgb_weights[0] * 1. / ss_weights_norm[1]
blur_g = gaussian_filter(
tf.expand_dims(input_img[..., 1, tf.newaxis], 0),
blur_kernel)[0] * rgb_weights[1] * 1. / ss_weights_norm[2]
blur_b = gaussian_filter(
tf.expand_dims(input_img[..., 2, tf.newaxis], 0),
blur_kernel)[0] * rgb_weights[2] * 1. / ss_weights_norm[3]
img_blur = tf.concat([blur_r, blur_g, blur_b], 2)
img_blur_rgb += img_blur
return img_blur_rgb
def gaussian_filter(image, sigma, pad_mode='REFLECT', name='gaussian_filter'):
"""Applies Gaussian filter to an image using depthwise conv.
Args:
image: 4-D Tensor with float32 dtype and shape [N, H, W, C].
sigma: Positive float or 0-D Tensor.
pad_mode: String, mode argument for tf.pad. Default is 'REFLECT' for
whole-sample symmetric padding.
name: A string to name this part of the graph.
Returns:
Filtered image, has the same shape with the input.
"""
with tf.name_scope(name):
image.shape.assert_has_rank(4)
sigma = tf.cast(sigma, tf.float32)
sigma.shape.assert_has_rank(0) # sigma is a scalar.
channels = tf.shape(image)[3]
r = tf.cast(tf.math.ceil(2.0 * sigma), tf.int32)
n = tf.range(-tf.cast(r, tf.float32), tf.cast(r, tf.float32) + 1)
coeffs = tf.exp(-0.5 * (n / sigma)**2)
coeffs /= tf.reduce_sum(coeffs)
coeffs_x = tf.tile(tf.reshape(coeffs, (1, -1, 1, 1)), (1, 1, channels, 1))
coeffs_y = tf.reshape(coeffs_x, (2 * r + 1, 1, channels, 1))
padded = tf.pad(image, ((0, 0), (r, r), (r, r), (0, 0)), pad_mode)
#with tf.device('/cpu:0'): # seems necessary for depthwise_conv2d
filtered = tf.nn.depthwise_conv2d(
padded, coeffs_x, (1, 1, 1, 1), 'VALID', name='filter_x')
filtered = tf.nn.depthwise_conv2d(
filtered, coeffs_y, (1, 1, 1, 1), 'VALID', name='filter_y')
filtered.set_shape(image.shape)
return filtered
def get_brightness_mask(size, min_val=0.5):
"""Render per-pixel intensity variation mask within [min_val, 1.].
Args:
size: A 2D tensor of target mask size.
Returns:
A Tensor of shape [H, W, 1] that is generated with perlin noise pattern.
"""
perlin_map = perlin_collection((size[0], size[1]), [2, 2], 2,
tf.random.uniform([], 0.05, 0.25))
perlin_map = perlin_map / (1. / (min_val + 1e-6)) + min_val
perlin_map = tf.minimum(perlin_map, 1.)
#perlin_map = tf.minimum(perlin_map, 0.6)
#perlin_map = tf.minimum(perlin_map, 0.8)
return perlin_map
def perlin_collection(size, reso, octaves, persistence):
"""Generate perlin patterns of varying frequencies.
Args:
size: a tuple of the target noise pattern size.
reso: a tuple that specifies the resolution along lateral and longitudinal.
octaves: int, number of octaves to use in the perlin model.
persistence: int, persistence applied to every iteration of the generation.
Returns:
a 2D tensor of the perlin noise pattern.
"""
noise = tf.zeros(size)
amplitude = 1.0
for _ in range(octaves):
noise += amplitude * perlin(size, reso)
amplitude *= persistence
reso[0] *= 2
reso[1] *= 2
return noise
def perlin(size, reso):
"""Generate a perlin noise pattern, with specified frequency along x and y.
Theory: https://flafla2.github.io/2014/08/09/perlinnoise.html
Args:
size: a tuple of integers of the target shape of the noise pattern.
reso: reso: a tuple that specifies the resolution along lateral and longitudinal (x and y).
Returns:
a 2D tensor of the target size.
"""
ysample = tf.linspace(0.0, reso[0], size[0])
xsample = tf.linspace(0.0, reso[1], size[1])
xygrid = tf.stack(tf.meshgrid(ysample, xsample), 2)
xygrid = tf.math.floormod(tf.transpose(xygrid, [1, 0, 2]), 1.0)
#xygrid = tf.math.floormod(tf.transpose(xygrid, [1, 0, 2]), 1.0)
xyfade = (6.0 * xygrid**5) - (15.0 * xygrid**4) + (10.0 * xygrid**3)
angles = 2.0 * np.pi * tf.random.uniform([reso[0] + 1, reso[1] + 1])
grads = tf.stack([tf.cos(angles), tf.sin(angles)], 2)
gradone = tf.image.resize(grads[0:-1, 0:-1], [size[0], size[1]], tf.image.ResizeMethod.NEAREST_NEIGHBOR)
gradtwo = tf.image.resize(grads[1:, 0:-1], [size[0], size[1]], tf.image.ResizeMethod.NEAREST_NEIGHBOR)
gradthr = tf.image.resize(grads[0:-1, 1:], [size[0], size[1]], tf.image.ResizeMethod.NEAREST_NEIGHBOR)
gradfou = tf.image.resize(grads[1:, 1:], [size[0], size[1]], tf.image.ResizeMethod.NEAREST_NEIGHBOR)
gradone = tf.reduce_sum(gradone * tf.stack([xygrid[:, :, 0], xygrid[:, :, 1]], 2), 2)
gradtwo = tf.reduce_sum(gradtwo * tf.stack([xygrid[:, :, 0] - 1, xygrid[:, :, 1]], 2), 2)
gradthr = tf.reduce_sum(gradthr * tf.stack([xygrid[:, :, 0], xygrid[:, :, 1] - 1], 2), 2)
gradfou = tf.reduce_sum(gradfou * tf.stack([xygrid[:, :, 0] - 1, xygrid[:, :, 1] - 1], 2), 2)
inteone = (gradone * (1.0 - xyfade[:, :, 0])) + (gradtwo * xyfade[:, :, 0])
intetwo = (gradthr * (1.0 - xyfade[:, :, 0])) + (gradfou * xyfade[:, :, 0])
intethr = (inteone * (1.0 - xyfade[:, :, 1])) + (intetwo * xyfade[:, :, 1])
return tf.sqrt(2.0) * intethr
def apply_spatially_varying_blur(image, blur_size=2, blurtype='disk'):
"""Apply spatially-varying blur to an image.
Using pyramid to approximate for efficiency
Args:
image: a 3D image tensor [H, W, C].
blur_size: base value for the blur size in the pyramic.
blurtype: type of blur, either 'disk' or 'gaussian'.
Returns:
a 2D tensor of the target size.
"""
pyramid = create_pyramid(image, blur_size=blur_size, blurtype=blurtype)
image_blurred = apply_pyramid_blend(pyramid)
return image_blurred
def lerp(a, b, x):
"""Linear interpolation between a and b using weight x."""
return a + x * (b - a)
def apply_pyramid_blend(pyramid):
"""Reconstruct an image using bilinear interpolation between pyramid levels.
Args:
pyramid: a list of tensors applied with different blur levels.
Returns:
A reconstructed 3D tensor that is collapsed from the input pyramid.
"""
num_levels = 3
guidance_perlin_base = perlin_collection(
(tf.shape(pyramid[0])[0], tf.shape(pyramid[0])[1]), [2, 2], 1,
tf.random.uniform([], 0.05, 0.25))
guidance_perlin_base -= tf.reduce_min(guidance_perlin_base)
guidance_perlin_base /= tf.reduce_max(guidance_perlin_base)
guidance_blur = tf.clip_by_value(guidance_perlin_base / (1. / num_levels),
0.0, num_levels)
image_reconst = pyramid
for i in range(int(num_levels) - 2, -1, -1):
alpha = tf.clip_by_value(guidance_blur - i, 0., 1.)
alpha = tf.expand_dims(alpha, 2)
image_reconst[i] = lerp(pyramid[i], image_reconst[i + 1], alpha)
return image_reconst[0]
def create_pyramid(image, blur_size=2, blurtype='disk'):
"""Create a pyramid of different levels of disk blur.
Args:
image: a 2D or 3D tensor of the input image.
blur_size: base value for the blur size in the pyramic.
blurtype: a string that specifies the kind of blur, either disk or gaussian.
Returns:
Pyramid: a list of tensors applied with different blur kernels.
"""
image_pyramid = []
for i in range(3):
rsz = np.power(2, i) * blur_size
if blurtype == 'disk':
input_lv = apply_disc_filter(image, rsz, is_rgb=False)
elif blurtype == 'gaussian':
input_lv = gaussian_filter(tf.expand_dims(input_lv, 0), blur_size)[0, ...]
else:
raise ValueError('Unknown blur type.')
image_pyramid.append(input_lv)
return image_pyramid
class ShadowMaker():
#shape match
#motion:shake-translation-scaling/speed-constant-change/repeat/break_time
#shape/rotate/scale/flip/blurring
#inconsistent shadow
#small shadow --> repeat to be big --> moving window
#Motion = 'trans' #'trans', 'shake', 'scaling'
#Speed = 0.1 # 0.1 - 1
#Scale = 1 # 0.3 - 2
#Rotation = 0 # 0 - 365
#Blur = 3 # 0 - 10
#Inconsistent = True
def __init__(self, face, lm):
"""Set values of computed attributes."""
self.mot = np.random.randint(low=1, high=3) #1 -'trans', 2-'shake', 3-'scaling'
self.spd_x = np.random.uniform(low=0.1, high=10.0)
self.spd_y = np.random.uniform(low=0.1, high=10.0)
self.scale = np.random.uniform(low=1.0, high=2.5)
self.rot = np.random.uniform(low=0, high=365.0)
self.blur = np.random.randint(low=10, high=15)
self.incs = np.random.uniform(size=(1,))
self.face = face
self.lm = lm
self.compile_mask()
def display(self):
print('*************************************************')
print('Pattern = '+str(self.mask_type))
print('Motion ='+str(self.motion))
print('Speedx ='+str(self.spd_x))
print('Speedy ='+str(self.spd_y))
print('Scale ='+str(self.scale))
print('Rot ='+str(self.rot))
print('Blur ='+str(self.blur))
print('Inconsistency ='+str(self.incs))
def compile_mask(self):
# generate shadow mask
_list = glob.glob('/research/cvlshare/cvl-liuyaoj1/Data/shadow/*.png')
_mask = _list[random.randint(0, len(_list) - 1)]
mask = cv2.imread(_mask, 0) / 255
if np.random.uniform(low=0, high=1) > 0.75:
mask = 1 - mask
# compute the center
lm = self.lm * self.face.shape[0]
lmp = np.copy(lm[0:17,:])
lmp[:,1] = lmp[0,1] - (lmp[:,1] - lmp[0,1]) * 0.6
lm = np.concatenate([lm,lmp],axis=0)
if _mask[0] != 'm' and np.random.uniform(low=-1, high=1) > 0:
start_center_idx = np.random.randint(low=17, high=67)
length = np.max([(np.max(lm[:,0])-np.min(lm[:,0]))/2, (np.max(lm[:,1])-np.min(lm[:,1]))/2])
start_center = lm[start_center_idx,:]
start_center[0] = (np.max(lm[:,0])+np.min(lm[:,0]))/2
start_center[1] = (np.max(lm[:,1])+np.min(lm[:,1]))/2
mask_shape = max(int(length * 2), 10)
mask = cv2.resize(mask,(mask_shape,mask_shape))
mask = cv2.blur(mask, (self.blur//2, self.blur//2))
mask = np.stack([mask],axis=2)
else:
start_center_idx = lm_list[np.random.randint(low=0, high=len(lm_list)-1)]-1
length = np.max([(np.max(lm[:,0])-np.min(lm[:,0]))/2, (np.max(lm[:,1])-np.min(lm[:,1]))/2])
start_center = lm[start_center_idx,:]
start_center[0] += length * np.random.uniform(low=-0.05, high=0.05)
start_center[1] += length * np.random.uniform(low=-0.05, high=0.05)
# scale/rotation/blur
mask_shape = max(int(length * self.scale * 2), 10)
mask = cv2.resize(mask,(mask_shape,mask_shape))
mask = ndimage.rotate(mask, self.rot, reshape=False)
mask = cv2.blur(mask, (self.blur, self.blur))
mask = np.stack([mask],axis=2)
self.mask = mask
self.mask_shape = mask_shape
self.mask_center = start_center
def compute_mask(self, time):
face = self.face
mask = self.mask
face_shape = face.shape
mask_shape = self.mask_shape
mask_center = self.mask_center
# generate shadow mask
movex = self.spd_x * time
movey = self.spd_y * time
centerx = int(mask_center[0]+movex)
centery = int(mask_center[1]+movey)
box = [int(centerx)-int(mask_shape/2),
int(centery)-int(mask_shape/2),
int(centerx)+ mask_shape - int(mask_shape/2),
int(centery)+ mask_shape - int(mask_shape/2)]
mbox = [0,0,mask_shape,mask_shape]
if box[0] < 0: