Skip to content

analysiscenter/ml_project_template

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ML Project Template

cookiecutter template for DS projects

Inspired by this repo

Requirements to use the cookiecutter template:

  • Python >= 3.5
  • Cookiecutter Python package >= 1.4.0: This can be installed with pip by or conda depending on how you manage your Python packages:
$ pip install cookiecutter

or

$ conda config --add channels conda-forge
$ conda install cookiecutter
  • dvc >= 0.93 (optional, only if you want to control your data using DVC)

To start a new project, run:

cookiecutter https://github.com/analysiscenter/ml_project_template

You will be asked for these fields:

Field Default Description
project_name Template Verbose project name, used in headings (docs, readme, etc).
repo_name project_name lowercased with spaces replaced by underscores Repository name on GitHub (and project's root directory name).
include_library no Chose a library to attach as a git submodule. no means that no library will be attached.
git_config_user_name do_not_set Specify local user name for git. Default is to skip this.
git_config_user_email do_not_set Specify local user email for git. Default is to skip this.
init_DVC yes Select whether you want to initialize DVC in the project.
dvc_cache_dir_mode pass if you selected not to initialize DVC, else infer Select cache directory for DVC. If pass, nothing is done; if infer, path is selected as /data/<repo_name>/.dvc/cache depending on include_library, if custom, value from custom_dvc_cache_dir is used
custom_dvc_cache_dir pass Provide a path to DVC cache directory, if you selected custom as dvc_cache_dir_mode.
lib_dvc_cache_dir_map default Just press Enter :) This sets some utility values.

GitHub repositories should be created manually, but automatic GitHub repository creation can be added in future

The resulting directory structure

The directory structure of your new project looks like this:

.
├── datasets                  <- Keep your datasets here
├── docker_containers
├── .dockerignore
├── .dvc
├── .dvcignore
├── extra                     <- extra helper utilities that are not project-specific, ex. cookiecutter template updater
│   ├── .cookiecutter.json
│   ├── src
│   └── update_cookiecutter_template.sh   <- run this script to merge recent changes in cookiecutter template into your project
├── .git
├── .gitattributes
├── .github
│   └── workflows
│       └── status.yml
├── .gitignore
├── .gitmodules
├── notebooks                 <- Development notebooks
├── overview                  <- Notebooks with overview of main results
├── pylintrc
├── readme.md                 <- The top-level README for developers using this project.
├── requirements.txt
├── src                       <- Project-specific models and utilities
│   ├── Library submodule     <- SeismicPro, SeismiQB, or batchflow as a git submodule
│   ├── __init__.py
│   └── readme.md
└── tests

About

cookiecutter template for DS projects

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published