Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 15 additions & 12 deletions fme/downscaling/aggregators/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -534,6 +534,8 @@ def __init__(
self._name = ensure_trailing_slash(name)
self._mean_target = Mean(batch_mean)
self._mean_prediction = Mean(batch_mean)
# corresponds to 40 x 80 deg at 3km resolution, in comparison CONUS is 28x65 deg
self.max_img_upload_size = 3276800

@torch.no_grad()
def record_batch(self, target: TensorMapping, prediction: TensorMapping) -> None:
Expand Down Expand Up @@ -583,19 +585,20 @@ def get_relative_mean(target, prediction):
metrics = {}
spectra = {}
for var_name in target.keys():
gap = torch.full(
(target[var_name].shape[-2], self.gap_width),
float(target[var_name].min()),
device=target[var_name].device,
)
maps[f"maps/{self._name}full-field/{var_name}"] = torch.cat(
(prediction[var_name], gap, target[var_name]), dim=1
)
maps[f"maps/{self._name}log10_relative_mean/{var_name}"] = relative[
var_name
]
error = prediction[var_name] - target[var_name]
maps[f"maps/{self._name}error/{var_name}"] = error
if target[var_name].nelement() < self.max_img_upload_size:
gap = torch.full(
(target[var_name].shape[-2], self.gap_width),
float(target[var_name].min()),
device=target[var_name].device,
)
maps[f"maps/{self._name}full-field/{var_name}"] = torch.cat(
(prediction[var_name], gap, target[var_name]), dim=1
)
maps[f"maps/{self._name}log10_relative_mean/{var_name}"] = relative[
var_name
]
maps[f"maps/{self._name}error/{var_name}"] = error
metrics[f"metrics/{self._name}bias/{var_name}"] = error.mean()

spectra_prefix = ensure_trailing_slash(f"power_spectrum_of_{self._name}")
Expand Down