Skip to content

aetperf/Edsger

Repository files navigation

Tests Status codecov Documentation Status PyPI version Downloads Python 3.9 | 3.10 | 3.11 | 3.12 | 3.13 Code style: black Cython lint: cython-lint Checked with pyright License: MIT

Edsger

Graph algorithms in Cython

Welcome to our Python library for graph algorithms. The library includes both Dijkstra's and Bellman-Ford's algorithms, with plans to add more common path algorithms later. It is also open-source and easy to integrate with other Python libraries. To get started, simply install the library using pip, and import it into your Python project.

Documentation : https://edsger.readthedocs.io/en/latest/

Small example : Dijkstra's Algorithm

To use Dijkstra's algorithm, you can import the Dijkstra class from the path module. The function takes a graph and a source node as input, and returns the shortest path from the source node to all other nodes in the graph.

import pandas as pd

from edsger.path import Dijkstra

# Create a DataFrame with the edges of the graph
edges = pd.DataFrame({
    'tail': [0, 0, 1, 2, 2, 3],
    'head': [1, 2, 2, 3, 4, 4],
    'weight': [1, 4, 2, 1.5, 3, 1]
})
edges
tail head weight
0 0 1 1.0
1 0 2 4.0
2 1 2 2.0
3 2 3 1.5
4 2 4 3.0
5 3 4 1.0
# Initialize the Dijkstra object
dijkstra = Dijkstra(edges)

# Run the algorithm from a source vertex
shortest_paths = dijkstra.run(vertex_idx=0)
print("Shortest paths:", shortest_paths)
Shortest paths: [0.  1.  3.  4.5 5.5]

We get the shortest paths from the source node 0 to all other nodes in the graph. The output is an array with the shortest path length to each node. A path length is the sum of the weights of the edges in the path.

Bellman-Ford Algorithm: Handling Negative Weights

The Bellman-Ford algorithm can handle graphs with negative edge weights and detect negative cycles, making it suitable for more complex scenarios than Dijkstra's algorithm.

from edsger.path import BellmanFord

# Create a graph with negative weights
edges_negative = pd.DataFrame({
    'tail': [0, 0, 1, 1, 2, 3],
    'head': [1, 2, 2, 3, 3, 4],
    'weight': [1, 4, -2, 5, 1, 3]  # Note the negative weight
})
edges_negative
tail head weight
0 0 1 1.0
1 0 2 4.0
2 1 2 -2.0
3 1 3 5.0
4 2 3 1.0
5 3 4 3.0
# Initialize and run Bellman-Ford
bf = BellmanFord(edges_negative)
shortest_paths = bf.run(vertex_idx=0)
print("Shortest paths:", shortest_paths)
Shortest paths: [ 0.  1. -1.  0.  3.]

The Bellman-Ford algorithm finds the optimal path even with negative weights. In this example, the shortest path from node 0 to node 2 has length -1 (going 0→1→2 with weights 1 + (-2) = -1), which is shorter than the direct path 0→2 with weight 4.

Negative Cycle Detection

Bellman-Ford can also detect negative cycles, which indicate that no shortest path exists:

# Create a graph with a negative cycle
edges_cycle = pd.DataFrame({
    'tail': [0, 1, 2],
    'head': [1, 2, 0],
    'weight': [1, -2, -1]  # Cycle 0→1→2→0 has total weight -2
})

bf_cycle = BellmanFord(edges_cycle)
try:
    bf_cycle.run(vertex_idx=0)
except ValueError as e:
    print("Error:", e)
Error: Negative cycle detected in the graph

Installation

Standard Installation

pip install edsger

Development Installation

For development work, clone the repository and install in development mode:

git clone https://github.com/aetperf/Edsger.git
cd Edsger
pip install -r requirements-dev.txt
pip install -e .

Development

This project uses several development tools to ensure code quality:

Type Checking

We use Pyright for static type checking:

# Run type checking
make typecheck

# Or directly with pyright
pyright

For more details on type checking configuration and gradual typing strategy, see TYPING.md.

Running Tests

# Run all tests
make test

# Run with coverage
make coverage

Code Formatting and Linting

# Format code with black
make format

# Check code style
make lint

Pre-commit Hooks

This project uses pre-commit hooks to maintain code quality. The hooks behave differently based on the branch:

  • Protected branches (main, release)*: All hooks run including pyright type checking
  • Feature branches: Only formatting hooks run (black, cython-lint) for faster commits
    • Run make typecheck or pre-commit run --all-files to manually check types before merging
# Install pre-commit hooks
pre-commit install

# Run all hooks manually
pre-commit run --all-files

# Skip specific hooks if needed
SKIP=pyright git commit -m "your message"

Available Make Commands

make help  # Show all available commands

Why Use Edsger?

Edsger is designed to be dataframe-friendly, providing seamless integration with pandas workflows for graph algorithms. Also it is rather efficient on Linux. Our benchmarks on the USA road network (23.9M vertices, 57.7M edges) demonstrate nice performance:

Dijkstra Performance Comparison

Contributing

We welcome contributions to the Edsger library. If you have any suggestions, bug reports, or feature requests, please open an issue on our GitHub repository.

License

Edsger is licensed under the MIT License. See the LICENSE file for more details.

Contact

For any questions or inquiries, please contact François Pacull at [email protected].

About

Graph algorithms in Cython

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •  

Languages