An AI-powered video processing toolkit for creating social media-optimized content with automated transcription, captioning, and thematic segmentation.
- Video Processing Pipeline
- Automated audio extraction and speech-to-text conversion
- Smart thematic segmentation using AI
- Mobile-optimized format conversion (9:16, 4:5, 1:1)
- Intelligent caption generation and overlay
- Advanced Analysis
- Context-aware content segmentation
- Dynamic title generation
- Smart keyword and hashtag extraction
- Sentiment analysis for content optimization
-
Desktop Application
- Intuitive graphical interface
- Drag-and-drop functionality
- Real-time processing feedback
- Batch processing capabilities
-
Server Deployment
- RESTful API integration
- Asynchronous processing with webhooks
- Multi-tenant architecture
- Containerized deployment support
π Check out our full project based on Clipify on https://github.com/adelelawady/Clipify-hub π
Download and install the latest version:
# Via pip
pip install clipify
# From source
git clone https://github.com/adelelawady/Clipify.git
cd Clipify
pip install -r requirements.txt
from clipify.core.clipify import Clipify
# Initialize with basic configuration
clipify = Clipify(
provider_name="hyperbolic",
api_key="your-api-key",
model="deepseek-ai/DeepSeek-V3",
convert_to_mobile=True,
add_captions=True
)
# Process video
result = clipify.process_video("input.mp4")
# Handle results
if result:
print(f"Created {len(result['segments'])} segments")
for segment in result['segments']:
print(f"Segment {segment['segment_number']}: {segment['title']}")
clipify = Clipify(
# AI Configuration
provider_name="hyperbolic",
api_key="your-api-key",
model="deepseek-ai/DeepSeek-V3",
max_tokens=5048,
temperature=0.7,
# Video Processing
convert_to_mobile=True,
add_captions=True,
mobile_ratio="9:16",
# Caption Styling
caption_options={
"font": "Bangers-Regular.ttf",
"font_size": 60,
"font_color": "white",
"stroke_width": 2,
"stroke_color": "black",
"highlight_current_word": True,
"word_highlight_color": "red",
"shadow_strength": 0.8,
"shadow_blur": 0.08,
"line_count": 1,
"padding": 50,
"position": "bottom"
}
)
from clipify.audio.extractor import AudioExtractor
# Initialize audio extractor
extractor = AudioExtractor()
# Extract audio from video
audio_path = extractor.extract_audio(
video_path="input_video.mp4",
output_path="extracted_audio.wav"
)
if audio_path:
print(f"Audio successfully extracted to: {audio_path}")
from clipify.audio.speech import SpeechToText
# Initialize speech to text converter
converter = SpeechToText(model_size="base") # Options: tiny, base, small, medium, large
# Convert audio to text with timing
result = converter.convert_to_text("audio_file.wav")
if result:
print("Transcript:", result['text'])
print("\nWord Timings:")
for word in result['word_timings'][:5]: # Show first 5 words
print(f"Word: {word['text']}")
print(f"Time: {word['start']:.2f}s - {word['end']:.2f}s")
from clipify.video.converter import VideoConverter
# Initialize video converter
converter = VideoConverter()
# Convert video to mobile format with blurred background
result = converter.convert_to_mobile(
input_video="landscape_video.mp4",
output_video="mobile_video.mp4",
target_ratio="9:16" # Options: "1:1", "4:5", "9:16"
)
if result:
print("Video successfully converted to mobile format")
from clipify.video.converterStretch import VideoConverterStretch
# Initialize stretch converter
stretch_converter = VideoConverterStretch()
# Convert video using stretch method
result = stretch_converter.convert_to_mobile(
input_video="landscape.mp4",
output_video="stretched.mp4",
target_ratio="4:5" # Options: "1:1", "4:5", "9:16"
)
if result:
print("Video successfully converted using stretch method")
from clipify.video.processor import VideoProcessor
# Initialize video processor with caption styling
processor = VideoProcessor(
# Font settings
font="Bangers-Regular.ttf",
font_size=60,
font_color="white",
# Text effects
stroke_width=2,
stroke_color="black",
shadow_strength=0.8,
shadow_blur=0.08,
# Caption behavior
highlight_current_word=True,
word_highlight_color="red",
line_count=1,
padding=50,
position="bottom" # Options: "bottom", "top", "center"
)
# Process video with captions
result = processor.process_video(
input_video="input_video.mp4",
output_video="captioned_output.mp4",
use_local_whisper="auto" # Options: "auto", True, False
)
if result:
print("Video successfully processed with captions")
# Process multiple video segments
segment_files = ["segment1.mp4", "segment2.mp4", "segment3.mp4"]
processed_segments = processor.process_video_segments(
segment_files=segment_files,
output_dir="processed_segments"
)
The VideoProcessor provides powerful captioning capabilities:
- Customizable font styling and text effects
- Word-level highlighting for better readability
- Shadow and stroke effects for visibility
- Automatic speech recognition using Whisper
- Support for batch processing multiple segments
from clipify.video.cutter import VideoCutter
# Initialize video cutter
cutter = VideoCutter()
# Cut a specific segment
result = cutter.cut_video(
input_video="full_video.mp4",
output_video="segment.mp4",
start_time=30.5, # Start at 30.5 seconds
end_time=45.2 # End at 45.2 seconds
)
if result:
print("Video segment successfully cut")
from clipify.core.text_processor import SmartTextProcessor
from clipify.core.ai_providers import HyperbolicAI
# Initialize AI provider and text processor
ai_provider = HyperbolicAI(api_key="your_api_key")
processor = SmartTextProcessor(ai_provider)
# Process text content
text = "Your long text content here..."
segments = processor.segment_by_theme(text)
if segments:
for segment in segments['segments']:
print(f"\nTitle: {segment['title']}")
print(f"Keywords: {', '.join(segment['keywords'])}")
print(f"Content length: {len(segment['content'])} chars")
clipify/
βββ clipify/
β βββ __init__.py # Package exports and version info
β βββ core/
β β βββ __init__.py # Core module exports
β β βββ clipify.py # Main Clipify class implementation
β β βββ processor.py # Content processing and segmentation
β β βββ text_processor.py # Text analysis and theme detection
β β βββ ai_providers.py # AI providers (OpenAI, Anthropic, Hyperbolic)
β βββ video/
β β βββ __init__.py # Video module exports
β β βββ processor.py # Video captioning and effects
β β βββ converter.py # Mobile format with blur background
β β βββ converter_stretch.py # Stretch-based format conversion
β β βββ cutter.py # Video segment extraction
β βββ audio/
β β βββ __init__.py # Audio module exports
β β βββ extractor.py # FFmpeg-based audio extraction
β β βββ speech.py # Whisper speech recognition
βββ scripts/
β βββ build.sh # Package build script
β βββ publish.sh # PyPI publishing script
βββ .gitignore # Git ignore patterns
βββ LICENSE # MIT License
βββ MANIFEST.in # Package manifest
βββ README.md # Project documentation
βββ requirements.txt # Project dependencies
βββ setup.py # Package configuration
hyperbolic
: Default provider with DeepSeek-V3 modelopenai
: OpenAI GPT models supportanthropic
: Anthropic Claude modelsollama
: Local model deployment
- Aspect Ratios:
1:1
,4:5
,9:16
- Output Formats: MP4, MOV
- Quality Presets: Low, Medium, High
- Font customization
- Color schemes
- Position options
- Animation effects
- Word highlighting
We welcome contributions! Here's how you can help:
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature
) - Commit changes (
git commit -m 'Add amazing feature'
) - Push to branch (
git push origin feature/amazing-feature
) - Open a Pull Request
Please read our Contributing Guidelines for details.
This project is licensed under the MIT License - see the LICENSE file for details.
- Enterprise Support: Contact [email protected]
- Community Support: GitHub Issues
- Documentation: Wiki
- FFmpeg for video processing
- OpenAI for AI capabilities
- PyTorch community
- All contributors and supporters