Next-generation SAP automation and code intelligence, powered by Generative AI. Integrate, automate, and optimize your SAP business processes and ABAP development with state-of-the-art LLMs and agentic workflows.
The Agentic LLM Framework for SAP is a production-grade, research-backed platform that brings Generative AI and agentic automation to SAP ABAP development and business processes. It enables:
- Intelligent ABAP code generation, refactoring, and review
- Business process automation (invoice, reporting, workflow, analytics)
- Plug-and-play integration with SAP S/4HANA, NetWeaver, and Eclipse ADT
- Research-driven, measurable business value and technical excellence
- AI Platforms: HCL AI Force, Joule AI, OpenAI, GCP AI, NVIDIA AI, AWS AI, Azure AI, IBM WATSON, Pega AI, Vertex AI
Directory/File | Purpose |
---|---|
src/zllm_00/ |
Core ABAP LLM & agentic framework |
src/zllm_99/ |
Example applications & demos |
abap/ |
20+ ABAP design pattern implementations |
version_abap/ |
Eclipse plugin for SAP ADT |
_predictoken/ |
ML models & training data |
examples/ |
Real-world ABAP & Python usage examples |
docs/ |
Architecture, GenAI, and research docs |
config/ |
Config files for SAP, LLMs, and GenAI |
graph TD
User[User/Business Process] --> Agentic[Agentic LLM Orchestrator]
Agentic --> ABAP[ABAP LLM Client Layer]
Agentic --> GenAI[GenAI SAP Integration Layer]
ABAP --> SAP[SAP System]
GenAI --> SAP
Agentic --> ML[Token Prediction & Analytics]
Agentic --> Cache[Response Caching]
Agentic --> Plugin[Eclipse Plugin]
- Agentic Orchestrator: Multi-agent reasoning, planning, and execution
- LLM Client Layer: Multi-provider (OpenAI, Azure, Joule, etc.) support
- GenAI SAP Integration: Business process automation, document/voice/image AI
- ML Analytics: Token prediction, cost optimization, performance monitoring
- GenAI SAP Integration: See full details
- Invoice processing, report generation, workflow automation, predictive analytics, voice/image AI
- Agentic Automation: Multi-step, multi-agent workflows for SAP
- ABAP Code Intelligence: Generation, refactoring, and review
- Design Patterns: 20+ ABAP patterns for maintainable, extensible code
- Eclipse Plugin: Seamless SAP ADT integration
- ML Token Prediction: Real-time, model-agnostic token/cost estimation
- Security & Compliance: API key encryption, GDPR, SAP security alignment
" Import ZLLM package and configure
CALL FUNCTION 'RS_CORR_INSERT' EXPORTING object_class = 'DEVC' object_name = 'ZLLM_00' devclass = '$TMP'.
SET PARAMETER ID 'ZLLM_API_KEY' FIELD 'your-api-key'.
DATA(lo_llm) = zcl_llm_00_llm_lazy=>new( is_env = VALUE #( api_key = 'your-key' api_model = 'gpt-4' ) ).
pip install -r requirements.txt
python train_models.py --input _predictoken/stats_4_training.tsv
python predict.py --text "Your ABAP code here"
cd version_abap && mvn clean install
# Install via Eclipse: Help → Install New Software → Add local update site
DATA(lo_invoice_ai) = NEW zcl_genai_invoice_processor( ).
DATA(ls_invoice_data) = lo_invoice_ai->process_invoice( lv_invoice_text ).
WRITE: / 'Vendor:', ls_invoice_data-vendor_name, 'Amount:', ls_invoice_data-amount.
DATA(lo_flow) = zcl_llm_00_flow_lazy=>new( ).
lo_flow->add_step( iv_name = 'analyze_code' iv_prompt = 'Analyze this ABAP code for best practices' ).
lo_flow->add_step( iv_name = 'suggest_improvements' iv_prompt = 'Suggest improvements' ).
DATA(lt_results) = lo_flow->execute( ).
from utils import predict_tokens_from_text
result = predict_tokens_from_text("CLASS zcl_example DEFINITION PUBLIC.", model="gpt4")
print("Predicted tokens:", result["predicted_tokens"])
- Research Plan: See full plan
- KPIs: 40-60% dev time reduction, 95%+ code accuracy, 80%+ user satisfaction
- Market Validation: 5+ SAP use cases, 10+ customer interviews, $2B+ TAM
- Performance: <2s response, 99.9% uptime, 1000+ concurrent users
- Creational: Factory, Abstract Factory, Singleton, Builder, Prototype
- Structural: Adapter, Bridge, Composite, Decorator, Facade, Flyweight, Proxy
- Behavioral: Chain of Responsibility, Command, Interpreter, Iterator, Mediator, Memento, Observer, State, Strategy, Template Method, Visitor
- API key encryption, GDPR compliance, SAP security standards
- Penetration testing, audit logging, rate limiting
- All code and examples tested on SAP S/4HANA 2022.
- For research methodology, KPIs, and next steps, see NEXT_STEPS_RESEARCH.md
- For GenAI SAP integration, see docs/GENAI_SAP_INTEGRATION.md
This project is ready for real-world SAP deployment and research publication.