Skip to content

abdjiber/cfe

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

About

This repository contains the Python implementation of my research paper algorithm categorical fuzzy entropy c-means (CFE).

Examples

import pandas as pd
from cfe import CFE
soybean_df = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/soybean/soybean-small.data")
soybean_df.columns = [f"A{i}" for i in range(1, soybean_df.shape[1] + 1)]
true_labels = soybean_df.A36.values # Last column corresponds to the objects classes.
soybean_df = soybean_df.drop("A36", axis=1)
X = soybean_df.values
features = list(soybean_df)
cfe = CFE(n_clusters=4, m=1.1, verbose=False)
cfe.fit(X, features)
ari = cfe.ari(true_labels)
print("Scores")
print("Partition coefficient: ", cfe.pe)
print("Partition entropy: ", cfe.pc)
print("ARI: ", ari)

Citations

If you use this work, please cite the following papers.

A. J. Djiberou Mahamadou, V. Antoine, E. M. Nguifo and S. Moreno, "Categorical fuzzy entropy c-means" 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, UK.

Abdoul Jalil Djiberou Mahamadou, Violaine Antoine, Engelbert Mephu Nguifo, Sylvain Moreno, “Apport de l'entropie pour les c-moyennes floues sur des données catégorielles”, EGC 2021, vol. RNTI-E-37.

About

Python implementation of CFE algorithm.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages