-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
43,344 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from datascience import *\n", | ||
"import numpy as np\n", | ||
"\n", | ||
"%matplotlib inline\n", | ||
"import matplotlib.pyplot as plots\n", | ||
"plots.style.use('fivethirtyeight')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Lecture 22" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Python " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# write the sum_up_to(k) function - can use a for loop\n", | ||
"\n", | ||
"\n", | ||
"\n", | ||
"\n", | ||
"\n", | ||
"\n", | ||
" " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# write the sum_up_to(k) function - without a for loop\n", | ||
"\n", | ||
"\n", | ||
"\n", | ||
"\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Tables" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/html": [ | ||
"<table border=\"1\" class=\"dataframe\">\n", | ||
" <thead>\n", | ||
" <tr>\n", | ||
" <th>Year Type</th> <th>Year</th> <th>Organization Group Code</th> <th>Organization Group</th> <th>Department Code</th> <th>Department</th> <th>Union Code</th> <th>Union</th> <th>Job Family Code</th> <th>Job Family</th> <th>Job Code</th> <th>Job</th> <th>Employee Identifier</th> <th>Salaries</th> <th>Overtime</th> <th>Other Salaries</th> <th>Total Salary</th> <th>Retirement</th> <th>Health/Dental</th> <th>Other Benefits</th> <th>Total Benefits</th> <th>Total Compensation</th>\n", | ||
" </tr>\n", | ||
" </thead>\n", | ||
" <tbody>\n", | ||
" <tr>\n", | ||
" <td>Calendar </td> <td>2015</td> <td>2 </td> <td>Public Works, Transportation & Commerce</td> <td>WTR </td> <td>PUC Water Department </td> <td>21 </td> <td>Prof & Tech Engineers - Miscellaneous, Local 21 </td> <td>2400 </td> <td>Lab, Pharmacy & Med Techs</td> <td>2481 </td> <td>Water Qualitytech I/II</td> <td>21538 </td> <td>82146 </td> <td>0 </td> <td>0 </td> <td>82146 </td> <td>16942.2 </td> <td>12340.9 </td> <td>6337.73 </td> <td>35620.8 </td> <td>117767 </td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <td>Calendar </td> <td>2015</td> <td>2 </td> <td>Public Works, Transportation & Commerce</td> <td>DPW </td> <td>General Services Agency - Public Works</td> <td>12 </td> <td>Carpet, Linoleum and Soft Tile Workers, Local 12</td> <td>7300 </td> <td>Journeyman Trade </td> <td>7393 </td> <td>Soft Floor Coverer </td> <td>5459 </td> <td>32165.8 </td> <td>973.19 </td> <td>848.96 </td> <td>33987.9 </td> <td>0 </td> <td>4587.51 </td> <td>2634.42 </td> <td>7221.93 </td> <td>41209.8 </td>\n", | ||
" </tr>\n", | ||
" </tbody>\n", | ||
"</table>\n", | ||
"<p>... (42987 rows omitted)</p>" | ||
], | ||
"text/plain": [ | ||
"<IPython.core.display.HTML object>" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"# load data on SF employees\n", | ||
"sf = Table.read_table('san_francisco_2015.csv')\n", | ||
"sf.show(2)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# What is the Mayor's total compensation? \n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# what proportion of people are making more than $100,000?\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from datascience import *\n", | ||
"import numpy as np\n", | ||
"\n", | ||
"%matplotlib inline\n", | ||
"import matplotlib.pyplot as plots\n", | ||
"plots.style.use('fivethirtyeight')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Lecture 22" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Python " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"55" | ||
] | ||
}, | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"def sum_up_to(k):\n", | ||
" if k < 0:\n", | ||
" return \"invalid input fool\"\n", | ||
" \n", | ||
" total = 0\n", | ||
" for i in np.arange(k + 1):\n", | ||
" total = total + i\n", | ||
" return total\n", | ||
"\n", | ||
"\n", | ||
"sum_up_to(10)\n", | ||
" " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"55" | ||
] | ||
}, | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"def sum_up_to2(k):\n", | ||
" if k < 0:\n", | ||
" return \"invalid input fool\"\n", | ||
" \n", | ||
" return np.sum(np.arange(k + 1))\n", | ||
"\n", | ||
"\n", | ||
"sum_up_to2(10)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Tables" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/html": [ | ||
"<table border=\"1\" class=\"dataframe\">\n", | ||
" <thead>\n", | ||
" <tr>\n", | ||
" <th>Year Type</th> <th>Year</th> <th>Organization Group Code</th> <th>Organization Group</th> <th>Department Code</th> <th>Department</th> <th>Union Code</th> <th>Union</th> <th>Job Family Code</th> <th>Job Family</th> <th>Job Code</th> <th>Job</th> <th>Employee Identifier</th> <th>Salaries</th> <th>Overtime</th> <th>Other Salaries</th> <th>Total Salary</th> <th>Retirement</th> <th>Health/Dental</th> <th>Other Benefits</th> <th>Total Benefits</th> <th>Total Compensation</th>\n", | ||
" </tr>\n", | ||
" </thead>\n", | ||
" <tbody>\n", | ||
" <tr>\n", | ||
" <td>Calendar </td> <td>2015</td> <td>2 </td> <td>Public Works, Transportation & Commerce</td> <td>WTR </td> <td>PUC Water Department </td> <td>21 </td> <td>Prof & Tech Engineers - Miscellaneous, Local 21 </td> <td>2400 </td> <td>Lab, Pharmacy & Med Techs</td> <td>2481 </td> <td>Water Qualitytech I/II</td> <td>21538 </td> <td>82146 </td> <td>0 </td> <td>0 </td> <td>82146 </td> <td>16942.2 </td> <td>12340.9 </td> <td>6337.73 </td> <td>35620.8 </td> <td>117767 </td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <td>Calendar </td> <td>2015</td> <td>2 </td> <td>Public Works, Transportation & Commerce</td> <td>DPW </td> <td>General Services Agency - Public Works</td> <td>12 </td> <td>Carpet, Linoleum and Soft Tile Workers, Local 12</td> <td>7300 </td> <td>Journeyman Trade </td> <td>7393 </td> <td>Soft Floor Coverer </td> <td>5459 </td> <td>32165.8 </td> <td>973.19 </td> <td>848.96 </td> <td>33987.9 </td> <td>0 </td> <td>4587.51 </td> <td>2634.42 </td> <td>7221.93 </td> <td>41209.8 </td>\n", | ||
" </tr>\n", | ||
" </tbody>\n", | ||
"</table>\n", | ||
"<p>... (42987 rows omitted)</p>" | ||
], | ||
"text/plain": [ | ||
"<IPython.core.display.HTML object>" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"sf = Table.read_table('san_francisco_2015.csv')\n", | ||
"sf.show(2)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"379798.03" | ||
] | ||
}, | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"# What is the Mayor's total compensation? \n", | ||
"sf.where('Job', 'Mayor').select(\"Total Compensation\") # in a Table\n", | ||
"sf.where('Job', 'Mayor').column(\"Total Compensation\").item(0) # as a number" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"0.4875898485659122" | ||
] | ||
}, | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"# what proportion of people are making more than $100,000?\n", | ||
"sf.where('Total Compensation', are.above(100000)).num_rows/sf.num_rows" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.