Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add TRMF imputation method #556

Merged
merged 4 commits into from
Dec 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions pypots/imputation/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@
from .timemixer import TimeMixer
from .moderntcn import ModernTCN
from .segrnn import SegRNN
from .trmf import TRMF

# naive imputation methods
from .locf import LOCF
Expand Down Expand Up @@ -89,4 +90,5 @@
"TEFN",
"CSAI",
"SegRNN",
"TRMF"
]
19 changes: 19 additions & 0 deletions pypots/imputation/trmf/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
"""
The package including the modules of TRMF.

Refer to the paper
Yu, H. F., Rao, N., & Dhillon, I. S.
Temporal regularized matrix factorization for high-dimensional time series prediction.
In Advances in neural information processing systems 2016.
<https://www.cs.utexas.edu/~rofuyu/papers/tr-mf-nips.pdf>`_

"""

# Created by Jun Wang <[email protected]> and Wenjie Du <[email protected]>
# License: BSD-3-Clause

from .model import TRMF

__all__ = [
"TRMF",
]
326 changes: 326 additions & 0 deletions pypots/imputation/trmf/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,326 @@
"""
The implementation of TRMF for the partially-observed time-series imputation task, which is mainly based on the implementation of TRMF in https://github.com/SemenovAlex/trmf/blob/master/trmf.py

"""

# Created by Jun Wang <[email protected]> and Wenjie Du <[email protected]>
# License: BSD-3-Clause


import warnings
from typing import Union, Optional

import h5py
import numpy as np
import torch

from ..base import BaseImputer


class TRMF:
"""Temporal Regularized Matrix Factorization (TRMF) imputation method.

Parameters
----------

lags : array-like, shape (n_lags,)
Set of lag indices to use in model.

K : int
Length of latent embedding dimension

lambda_f : float
Regularization parameter used for matrix F.

lambda_x : float
Regularization parameter used for matrix X.

lambda_w : float
Regularization parameter used for matrix W.

alpha : float
Regularization parameter used for make the sum of lag coefficient close to 1.
That helps to avoid big deviations when forecasting.

eta : float
Regularization parameter used for X when undercovering autoregressive dependencies.

max_iter : int
Number of iterations of updating matrices F, X and W.

F_step : float
Step of gradient descent when updating matrix F.

X_step : float
Step of gradient descent when updating matrix X.

W_step : float
Step of gradient descent when updating matrix W.


Attributes
----------

F : ndarray, shape (n_timeseries, K)
Latent embedding of timeseries.

X : ndarray, shape (K, n_timepoints)
Latent embedding of timepoints.

W : ndarray, shape (K, n_lags)
Matrix of autoregressive coefficients.
"""

def __init__(self, lags, L, K, lambda_f, lambda_x, lambda_w, alpha, eta, max_iter=1000,
F_step=0.0001, X_step=0.0001, W_step=0.0001
):
super(TRMF, self).__init__()

self.lags = lags
self.L = L
self.K = K
self.lambda_f = lambda_f
self.lambda_x = lambda_x
self.lambda_w = lambda_w
self.alpha = alpha
self.eta = eta
self.max_iter = max_iter
self.F_step = F_step
self.X_step = X_step
self.W_step = W_step

self.W = None
self.F = None
self.X = None


def fit(self,
train_set: Union[dict, str],
val_set: Optional[Union[dict, str]] = None,
file_type: str = "hdf5",
resume: bool = False,
) -> None:
"""Fit the TRMF model according to the given training data.

Model fits through sequential updating three matrices:
- matrix self.F;
- matrix self.X;
- matrix self.W.

Each matrix updated with gradient descent.

Parameters
----------
train_set : ndarray, shape (n_timeseries, n_timepoints)
Training data.

val_set : ndarray, shape (n_timeseries, n_timepoints)
Validation data.

file_type :
The type of the given file if train_set and val_set are path strings.

resume : bool
Used to continue fitting.

Returns
-------
self : object
Returns self.
"""

if isinstance(train_set, str):
with h5py.File(train_set, "r") as f:
X = f["X"][:]
else:
X = train_set["X"]

assert len(X.shape) == 2, (
f"Input X should have 2 dimensions [n_samples, n_features], "
f"but the actual shape of X: {X.shape}"
)
if isinstance(X, list):
X = np.asarray(X)

if not resume:
self.Y = X.copy()
mask = np.array((~np.isnan(self.Y)).astype(int))
self.mask = mask
self.Y[self.mask == 0] = 0.
self.N, self.T = self.Y.shape
self.W = np.random.randn(self.K, self.L) / self.L
self.F = np.random.randn(self.N, self.K)
self.X = np.random.randn(self.K, self.T)

for _ in range(self.max_iter):
self._update_F(step=self.F_step)
self._update_X(step=self.X_step)
self._update_W(step=self.W_step)


def impute_missings(self):
"""Impute each missing element in timeseries.

Model uses matrix X and F to get all missing elements.

Parameters
----------

Returns
-------
data : ndarray, shape (n_timeseries, T)
Predictions.
"""
data = self.Y
data[self.mask == 0] = np.dot(self.F, self.X)[self.mask == 0]
result_dict = {
"imputation": data,
}
return result_dict


def impute(
self,
) -> np.ndarray:
result_dict = self.impute_missings()
return result_dict["imputation"]


def _update_F(self, step, n_iter=1):
"""Gradient descent of matrix F.

n_iter steps of gradient descent of matrix F.

Parameters
----------
step : float
Step of gradient descent when updating matrix.

n_iter : int
Number of gradient steps to be made.

Returns
-------
self : objects
Returns self.
"""

for _ in range(n_iter):
self.F -= step * self._grad_F()


def _update_X(self, step, n_iter=1):
"""Gradient descent of matrix X.

n_iter steps of gradient descent of matrix X.

Parameters
----------
step : float
Step of gradient descent when updating matrix.

n_iter : int
Number of gradient steps to be made.

Returns
-------
self : objects
Returns self.
"""

for _ in range(n_iter):
self.X -= step * self._grad_X()


def _update_W(self, step, n_iter=1):
"""Gradient descent of matrix W.

n_iter steps of gradient descent of matrix W.

Parameters
----------
step : float
Step of gradient descent when updating matrix.

n_iter : int
Number of gradient steps to be made.

Returns
-------
self : objects
Returns self.
"""

for _ in range(n_iter):
self.W -= step * self._grad_W()


def _grad_F(self):
"""Gradient of matrix F.

Evaluating gradient of matrix F.

Parameters
----------

Returns
-------
self : objects
Returns self.
"""

return - 2 * np.dot((self.Y - np.dot(self.F, self.X)) * self.mask, self.X.T) + 2 * self.lambda_f * self.F


def _grad_X(self):
"""Gradient of matrix X.

Evaluating gradient of matrix X.

Parameters
----------

Returns
-------
self : objects
Returns self.
"""

for l in range(self.L):
lag = self.lags[l]
W_l = self.W[:, l].repeat(self.T, axis=0).reshape(self.K, self.T)
X_l = self.X * W_l
z_1 = self.X - np.roll(X_l, lag, axis=1)
z_1[:, :max(self.lags)] = 0.
z_2 = - (np.roll(self.X, -lag, axis=1) - X_l) * W_l
z_2[:, -lag:] = 0.

grad_T_x = z_1 + z_2
return - 2 * np.dot(self.F.T, self.mask * (self.Y - np.dot(self.F, self.X))) + self.lambda_x * grad_T_x + self.eta * self.X


def _grad_W(self):
"""Gradient of matrix W.

Evaluating gradient of matrix W.

Parameters
----------

Returns
-------
self : objects
Returns self.
"""

grad = np.zeros((self.K, self.L))
for l in range(self.L):
lag = self.lags[l]
W_l = self.W[:, l].repeat(self.T, axis=0).reshape(self.K, self.T)
X_l = self.X * W_l
z_1 = self.X - np.roll(X_l, lag, axis=1)
z_1[:, :max(self.lags)] = 0.
z_2 = - (z_1 * np.roll(self.X, lag, axis=1)).sum(axis=1)
grad[:, l] = z_2
return grad + self.W * 2 * self.lambda_w / self.lambda_x -\
self.alpha * 2 * (1 - self.W.sum(axis=1)).repeat(self.L).reshape(self.W.shape)
Loading