Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixing CSDI gtmask bug #255

Merged
merged 2 commits into from
Dec 4, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions pypots/imputation/csdi/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,14 +69,14 @@ def _fetch_data_from_array(self, idx: int) -> Iterable:
X = self.X[idx].to(torch.float32)
X_intact, X, missing_mask, indicating_mask = mcar(X, p=self.rate)

observed_data = X_intact
observed_mask = missing_mask + indicating_mask
observed_data = X_intact # i.e. originally observed data
observed_mask = missing_mask + indicating_mask # i.e. originally missing masks
observed_tp = (
torch.arange(0, self.n_steps, dtype=torch.float32)
if self.time_points is None
else self.time_points[idx].to(torch.float32)
)
gt_mask = indicating_mask
gt_mask = missing_mask # missing mask with ground truth masked for validation
for_pattern_mask = (
gt_mask if self.for_pattern_mask is None else self.for_pattern_mask[idx]
)
Expand Down
4 changes: 2 additions & 2 deletions pypots/imputation/csdi/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -128,9 +128,9 @@ def __init__(
d_time_embedding: int,
d_feature_embedding: int,
d_diffusion_embedding: int,
is_unconditional: bool = False,
target_strategy: str = "random",
n_diffusion_steps: int = 50,
target_strategy: str = "random",
is_unconditional: bool = False,
schedule: str = "quad",
beta_start: float = 0.0001,
beta_end: float = 0.5,
Expand Down
4 changes: 3 additions & 1 deletion pypots/imputation/csdi/modules/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -127,7 +127,9 @@ def get_side_info(self, observed_tp, cond_mask):
) # (K,emb)
feature_embed = feature_embed.unsqueeze(0).unsqueeze(0).expand(B, L, -1, -1)

side_info = torch.cat([time_embed, feature_embed], dim=-1) # (B,L,K,*)
side_info = torch.cat(
[time_embed, feature_embed], dim=-1
) # (B,L,K,emb+d_feature_embedding)
side_info = side_info.permute(0, 3, 2, 1) # (B,*,K,L)

if not self.is_unconditional:
Expand Down
28 changes: 14 additions & 14 deletions pypots/imputation/csdi/modules/submodules.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,14 +38,6 @@ def __init__(self, n_diffusion_steps, d_embedding=128, d_projection=None):
self.projection1 = nn.Linear(d_embedding, d_projection)
self.projection2 = nn.Linear(d_projection, d_projection)

def forward(self, diffusion_step):
x = self.embedding[diffusion_step]
x = self.projection1(x)
x = F.silu(x)
x = self.projection2(x)
x = F.silu(x)
return x

@staticmethod
def _build_embedding(n_steps, d_embedding=64):
steps = torch.arange(n_steps).unsqueeze(1) # (T,1)
Expand All @@ -58,6 +50,14 @@ def _build_embedding(n_steps, d_embedding=64):
table = torch.cat([torch.sin(table), torch.cos(table)], dim=1) # (T,dim*2)
return table

def forward(self, diffusion_step: int):
x = self.embedding[diffusion_step]
x = self.projection1(x)
x = F.silu(x)
x = self.projection2(x)
x = F.silu(x)
return x


class ResidualBlock(nn.Module):
def __init__(self, d_side, n_channels, diffusion_embedding_dim, nheads):
Expand All @@ -73,7 +73,7 @@ def __init__(self, d_side, n_channels, diffusion_embedding_dim, nheads):
)

def forward_time(self, y, base_shape):
B, channel, K, L = base_shape
B, channel, K, L = base_shape # bz, 2, n_features, n_steps
if L == 1:
return y
y = y.reshape(B, channel, K, L).permute(0, 2, 1, 3).reshape(B * K, channel, L)
Expand All @@ -82,7 +82,7 @@ def forward_time(self, y, base_shape):
return y

def forward_feature(self, y, base_shape):
B, channel, K, L = base_shape
B, channel, K, L = base_shape # bz, 2, n_features, n_steps
if K == 1:
return y
y = y.reshape(B, channel, K, L).permute(0, 3, 1, 2).reshape(B * L, channel, K)
Expand All @@ -98,8 +98,8 @@ def forward(self, x, cond_info, diffusion_emb):
diffusion_emb = self.diffusion_projection(diffusion_emb).unsqueeze(
-1
) # (B,channel,1)
y = x + diffusion_emb

y = x + diffusion_emb
y = self.forward_time(y, base_shape)
y = self.forward_feature(y, base_shape) # (B,channel,K*L)
y = self.mid_projection(y) # (B,2*channel,K*L)
Expand Down Expand Up @@ -155,12 +155,12 @@ def __init__(
self.n_channels = n_channels

def forward(self, x, cond_info, diffusion_step):
B, input_dim, K, L = x.shape
B, input_dim, K, L = x.shape # bz, 2, n_features, n_steps

x = x.reshape(B, input_dim, K * L)
x = self.input_projection(x)
x = self.input_projection(x) # bz, n_channels, n_features*n_steps
x = F.relu(x)
x = x.reshape(B, self.n_channels, K, L)
x = x.reshape(B, self.n_channels, K, L) # bz, n_channels, n_features, n_steps

diffusion_emb = self.diffusion_embedding(diffusion_step)

Expand Down
1 change: 1 addition & 0 deletions tests/imputation/csdi.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,7 @@ class TestCSDI(unittest.TestCase):
d_time_embedding=32,
d_feature_embedding=3,
d_diffusion_embedding=32,
n_diffusion_steps=10,
n_heads=1,
epochs=EPOCHS,
saving_path=saving_path,
Expand Down