Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ jobs:
-DMPIEXEC_PREFLAGS='--bind-to;none;--allow-run-as-root'
-DCMAKE_PREFIX_PATH="/usr/local/opt/bison;/usr/local/opt/scalapack;/usr/local/opt/boost"
-DTA_ASSERT_POLICY=TA_ASSERT_THROW
-DENABLE_SCALAPACK=ON
-DTA_SCALAPACK=ON

steps:
- uses: actions/checkout@v4
Expand Down
8 changes: 4 additions & 4 deletions .gitlab-ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -14,11 +14,11 @@ variables:
TA_ASSERT_POLICY=TA_ASSERT_THROW
TA_UT_CTEST_TIMEOUT=3000
${TA_PYTHON}
${ENABLE_CUDA}
${TA_CUDA}
CUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda
${BLA_VENDOR}
${BLA_THREADS}
${ENABLE_SCALAPACK}
${TA_SCALAPACK}

before_script:
# NB: if CMAKE_BUILD_PARALLEL_LEVEL is not set (i.e. using shared runner), use 1 to ensure we have enough memory
Expand All @@ -42,7 +42,7 @@ ubuntu:
image: valeevgroup/${IMAGE}
variables:
TA_PYTHON : "TA_PYTHON=ON"
ENABLE_SCALAPACK : "ENABLE_SCALAPACK=OFF"
TA_SCALAPACK : "TA_SCALAPACK=OFF"
script:
- ./ci/.build-project
--build ./build
Expand All @@ -69,7 +69,7 @@ ubuntu:
CXX: [ g++ ]
BUILD_TYPE : [ "RelWithDebInfo" ]
TA_PYTHON : [ "TA_PYTHON=OFF" ]
ENABLE_CUDA : [ "ENABLE_CUDA=ON" ]
TA_CUDA : [ "TA_CUDA=ON" ]
TA_TARGETS : [ "tiledarray examples-tiledarray check_serial-tiledarray" ]
RUNNER_TAGS: [ cuda ]

Expand Down
29 changes: 13 additions & 16 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -117,20 +117,17 @@ set(MPI_CXX_SKIP_MPICXX TRUE CACHE BOOL "MPI_CXX_SKIP_MPICXX")
option(ENABLE_MPI "Enable MPI" ON)
add_feature_info(MPI ENABLE_MPI "Message-Passing Interface supports distributed-memory parallel programs")

option(ENABLE_SCALAPACK "Enable ScaLAPACK Bindings in TiledArray" OFF)
add_feature_info(ScaLAPACK ENABLE_SCALAPACK "ScaLAPACK provides distributed linear algebra")
option(TA_SCALAPACK "Enable ScaLAPACK Bindings in TiledArray" OFF)
add_feature_info(ScaLAPACK TA_SCALAPACK "ScaLAPACK provides distributed linear algebra")

option(ENABLE_WFN91_LINALG_DISCOVERY_KIT "Use linear algebra discovery kit from github.com/wavefunction91 [recommended]" ON)
add_feature_info(WFN91LinearAlgebraDiscoveryKit ENABLE_WFN91_LINALG_DISCOVERY_KIT "Linear algebra discovery kit from github.com/wavefunction91 supports many more corner cases than the default CMake modules and/or ICL's BLAS++/LAPACK++ modules")
option(TA_LINALG_DISCOVERY_KIT "Use linear algebra discovery kit from github.com/wavefunction91 [recommended]" ON)
add_feature_info(WFN91LinearAlgebraDiscoveryKit TA_LINALG_DISCOVERY_KIT "Linear algebra discovery kit from github.com/wavefunction91 supports many more corner cases than the default CMake modules and/or ICL's BLAS++/LAPACK++ modules")

redefaultable_option(ENABLE_TBB "Enable use of TBB with MADNESS" OFF)
add_feature_info(TBB ENABLE_TBB "Intel Thread-Building Blocks (TBB) supports programming shared-memory systems")
option(TA_CUDA "Enables use of NVIDIA CUDA-supported hardware (such as NVIDIA GPUs) by TiledArray" OFF)
add_feature_info(CUDA TA_CUDA "Use of NVIDIA CUDA-supported hardware by TiledArray")

option(ENABLE_CUDA "Enable use of CUDA with TiledArray" OFF)
add_feature_info(CUDA ENABLE_CUDA "NVIDIA CUDA support for GPU")

option(ENABLE_HIP "Enable use of HIP with TiledArray" OFF)
add_feature_info(HIP ENABLE_HIP "AMD HIP/ROCm support for GPU")
option(TA_HIP "Enables use of AMD HIP-supported hardware (such as AMD GPUs) by TiledArray" OFF)
add_feature_info(HIP TA_HIP "Use of AMD HIP-supported hardware by TiledArray")

option(ENABLE_GPERFTOOLS "Enable linking with Gperftools" OFF)
add_feature_info(GPERFTOOLS ENABLE_GPERFTOOLS "Google Performance Tools provide fast memory allocation and performance profiling")
Expand Down Expand Up @@ -310,10 +307,10 @@ endif(CCACHE)

# required deps:
# 1. derive runtime (CUDA/HIP/...) first since others may depend on it
if(ENABLE_CUDA)
if(TA_CUDA)
include(external/cuda.cmake)
endif()
if(ENABLE_HIP)
if(TA_HIP)
include(external/hip.cmake)
endif()
include(${PROJECT_SOURCE_DIR}/cmake/modules/FindOrFetchRangeV3.cmake)
Expand All @@ -334,14 +331,14 @@ include(external/umpire.cmake)
# - yes => Invoke first to configure the correct libraries config and run modules to find BLAS/LAPACK/ScaLAPACK(if needed)
# - no => BLAS/LAPACK will be discovered by BLAS++/LAPACK++ (loaded by BTAS) which use standard CMake modules or
# their custom modules; if needed, ScaLAPACK will be discovered by BLACS++
if (ENABLE_WFN91_LINALG_DISCOVERY_KIT)
if (TA_LINALG_DISCOVERY_KIT)
include(FetchWfn91LinAlgModules)
include(FindLinalg)
endif(ENABLE_WFN91_LINALG_DISCOVERY_KIT)
endif(TA_LINALG_DISCOVERY_KIT)
# Boost is to be discovered by the top cmake project, and every (sub)project needs to make sure it has all of its targets
include(external/boost.cmake)
include(${PROJECT_SOURCE_DIR}/cmake/modules/FindOrFetchBTAS.cmake)
if(ENABLE_SCALAPACK)
if(TA_SCALAPACK)
include(external/scalapackpp.cmake)
endif()

Expand Down
18 changes: 8 additions & 10 deletions INSTALL.md
Original file line number Diff line number Diff line change
Expand Up @@ -200,8 +200,8 @@ ASLR is a standard technique for increasing platform security implemented by the
* `CMAKE_POSITION_INDEPENDENT_CODE` -- This standard CMake variable controls whether targets are compiled by default as position-independent code or not. If `BUILD_SHARED_LIBS=OFF` need to set this to `ON` if want to use the TiledArray libraries to build shared libraries or position-independent executables.

To make things more concrete, consider the following 2 scenarios:
* Platform with ASLR disabled -- set `TA_ASSUMES_ASLR_DISABLED=ON` to set the defaults correctly and enable the ASLR check. `BUILD_SHARED_LIBS` can be set to `ON` (to produce shared TA/MADworld libraries, e.g., to minimize the executable size) or to `OFF` to produce static libraries. If the TA+MADworld static libraries will be linked into shared libraries set `CMAKE_POSITION_INDEPENDENT_CODE=ON`, otherwise `CMAKE_POSITION_INDEPENDENT_CODE` will be set to OFF for maximum efficiency of function calls.
* Platform with ASLR enabled -- this is the default. Setting `BUILD_SHARED_LIBS=ON` in this scenario will produce executables that can only be safely used with 1 MPI rank, thus `BUILD_SHARED_LIBS` will be defaulted to OFF (i.e. TA+MADworld libraries will be built as static libraries). `CMAKE_POSITION_INDEPENDENT_CODE` is by default set to `ON`, thus TA+MADworld libraries can be linked into position-independent executables safely. TA+MADworld libraries can also be linked into a shared library, provided that *ALL* code using TA+MADworld is part of the *SAME* shared library. E.g. to link TA+MADworld into a Python module compile TA+MADworld libraries and their dependents as static libraries (with `CMAKE_POSITION_INDEPENDENT_CODE=ON`) and link them all together into a single module (same logic applies to shared libraries using TA+MADworld).
* Platform with ASLR disabled -- set `TA_ASSUMES_ASLR_DISABLED=ON` to set the defaults correctly and enable the ASLR check. `BUILD_SHARED_LIBS` can be set to `ON` (to produce shared TA/MADworld libraries, e.g., to minimize the executable size) or to `OFF` to produce static libraries. If the TA+MADworld static libraries will be linked into shared libraries set `CMAKE_POSITION_INDEPENDENT_CODE=ON`, otherwise `CMAKE_POSITION_INDEPENDENT_CODE` will be set to `OFF` for maximum efficiency of function calls.
* Platform with ASLR enabled -- this is the default. Setting `BUILD_SHARED_LIBS=ON` in this scenario will produce executables that can only be safely used with 1 MPI rank, thus `BUILD_SHARED_LIBS` will be defaulted to `OFF` (i.e. TA+MADworld libraries will be built as static libraries). `CMAKE_POSITION_INDEPENDENT_CODE` is by default set to `ON`, thus TA+MADworld libraries can be linked into position-independent executables safely. TA+MADworld libraries can also be linked into a shared library, provided that *ALL* code using TA+MADworld is part of the *SAME* shared library. E.g. to link TA+MADworld into a Python module compile TA+MADworld libraries and their dependents as static libraries (with `CMAKE_POSITION_INDEPENDENT_CODE=ON`) and link them all together into a single module (same logic applies to shared libraries using TA+MADworld).

## MPI

Expand All @@ -212,7 +212,7 @@ following CMake cache variables:
* MPI_C_COMPILER -- The MPI C compiler wrapper
* MPI_CXX_COMPILER -- The MPI C++ compiler wrapper

You can build TiledArray without MPI support by setting ENABLE_MPI to OFF.
You can build TiledArray without MPI support by setting `ENABLE_MPI` to `OFF`.
Though we strongly recommend compiling with MPI even if you do not intend
to use TiledArray in a distributed memory environment. Note, if you
build MADNESS yourself, you must also configure MADNESS with `ENABLE_MPI=OFF`
Expand All @@ -236,7 +236,7 @@ as needed.
As of version 1.0 TiledArray also provides a direct (non-iterative) linear solvers API
implemented using LAPACK and (optionally) ScaLAPACK. Therefore LAPACK is now a mandatory
prerequisite of TiledArray. The use of ScaLAPACK can be enabled by setting CMake cache
variable `ENABLE_SCALAPACK` to `ON`.
variable `TA_SCALAPACK` to `ON`.

Robust discovery of linear algebra libraries, and _especially_ their distributed-memory
variants, is a complex process. Unfortunately even for serial/shared-memory linear
Expand All @@ -245,7 +245,7 @@ algebra libraries only basic scenarios are supported by the standard CMake modul
[LAPACK](https://cmake.org/cmake/help/latest/module/FindLAPACK.html)).
There are several discovery mechanisms available for robust discovery of linear
algebra in TA:
- By specifying the `BLAS_LIBRARIES`, `LAPACK_LIBRARIES`, and (if `ENABLE_SCALAPACK` is on)
- By specifying the `BLAS_LIBRARIES`, `LAPACK_LIBRARIES`, and (if `TA_SCALAPACK` is on)
`ScaLAPACK_LIBRARIES` CMake cache variables via CMake command line or via a toolchain.
Doing this overrides all other mechanisms of discovery described below and is recommended
if the discovery fails for some reason. To help with setting these variables for specific
Expand All @@ -270,7 +270,7 @@ algebra in TA:
- `Accelerate`: Apple's Accelerate framework
- `FLAME`: (LAPACK-only) [libFLAME](https://www.cs.utexas.edu/~flame/web/libFLAME.html)
*N.B.* These differ from the recognized values of the `BLA_VENDOR` variable used by the [BLAS+LAPACK CMake modules](https://cmake.org/cmake/help/latest/module/FindBLAS.html).
- If the use of the NWChemEx kit is disabled by setting CMake cache variable `ENABLE_WFN91_LINALG_DISCOVERY_KIT` to `OFF`
- If the use of the NWChemEx kit is disabled by setting CMake cache variable `TA_LINALG_DISCOVERY_KIT` to `OFF`
BLAS/LAPACK are imported transitively via the BLAS++/LAPACK++ libraries (which are themselves
imported transitively via the BTAS library). Under the most common scenario, where TiledArray
will configure and compile BTAS dependency and its BLAS++/LAPACK++ prerequisites from source
Expand Down Expand Up @@ -329,9 +329,9 @@ Also note that even if OpenMP or TBB backends are used, TiledArray will be defau

Support for execution on NVIDIA and AMD GPGPUs is controlled by the following variables:

* `ENABLE_CUDA` -- Set to `ON` to turn on CUDA support. [Default=OFF].
* `TA_CUDA` -- Set to `ON` to turn on CUDA support. [Default=OFF].
* `CMAKE_CUDA_HOST_COMPILER` -- Set to the path to the host C++ compiler to be used by CUDA compiler. CUDA compilers used to be notorious for only being able to use specific C++ host compilers, but support for more recent C++ host compilers has improved. The default is determined by the CUDA compiler and the user environment variables (`PATH` etc.).
* `ENABLE_HIP` -- Set to `ON` to turn on HIP/ROCm support. [Default=OFF].
* `TA_HIP` -- Set to `ON` to turn on HIP/ROCm support. [Default=OFF].
* `LIBRETT_INSTALL_DIR` -- the installation prefix of the pre-installed LibreTT library. This should not be normally needed; it is strongly recommended to let TiledArray build and install LibreTT.
* `UMPIRE_INSTALL_DIR` -- the installation prefix of the pre-installed Umpire library. This should not be normally needed; it is strongly recommended to let TiledArray build and install Umpire.

Expand Down Expand Up @@ -367,12 +367,10 @@ the correct revision of MADNESS.
The following CMake options may be used to modify build behavior or find MADNESS:

* `ENABLE_MPI` -- Enable MPI [Default=ON]
* `ENABLE_SCALAPACK` -- Enable the use of ScaLAPACK bindings [Default=OFF]
* `ENABLE_TBB` -- Enable the use of TBB when building MADNESS [Default=ON]
* `ENABLE_GPERFTOOLS` -- Enable the use of gperftools when building MADNESS [Default=OFF]
* `ENABLE_TCMALLOC_MINIMAL` -- Enable the use of gperftool's tcmalloc_minimal library only (the rest of gperftools is skipped) when building MADNESS [Default=OFF]
* `ENABLE_LIBUNWIND` -- Force the discovery of libunwind library when building MADNESS [Default=OFF]
* `ENABLE_WFN91_LINALG_DISCOVERY_KIT` -- Enable the use of NWChemEx's linear algebra discovery [Default=ON]
* `MADNESS_SOURCE_DIR` -- Path to the MADNESS source directory
* `MADNESS_BINARY_DIR` -- Path to the MADNESS build directory
* `MADNESS_URL` -- Path to the MADNESS repository [Default=MADNESS git repository]
Expand Down
2 changes: 1 addition & 1 deletion bin/docker-cuda-build.sh
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ RUN apt-get update && apt-get install -y python3 python3-pip python3-test python
RUN CMAKE_URL="https://cmake.org/files/v${CMAKE_VERSION%.[0-9]}/cmake-${CMAKE_VERSION}-Linux-x86_64.tar.gz" && wget --no-check-certificate -O - \$CMAKE_URL | tar --strip-components=1 -xz -C /usr/local
ENV CMAKE=/usr/local/bin/cmake
# 3. download and build TiledArray
RUN cd /usr/local/src && git clone --depth=1 https://github.com/ValeevGroup/tiledarray.git && cd /usr/local/src/tiledarray && mkdir build && cd build && \$CMAKE .. -G Ninja -DCMAKE_CXX_COMPILER=g++ -DCMAKE_C_COMPILER=gcc -DCMAKE_INSTALL_PREFIX=/usr/local -DENABLE_CUDA=ON -DCMAKE_BUILD_TYPE=RelWithDebInfo && \$CMAKE --build . --target tiledarray && \$CMAKE --build . --target examples && \$CMAKE --build . --target install
RUN cd /usr/local/src && git clone --depth=1 https://github.com/ValeevGroup/tiledarray.git && cd /usr/local/src/tiledarray && mkdir build && cd build && \$CMAKE .. -G Ninja -DCMAKE_CXX_COMPILER=g++ -DCMAKE_C_COMPILER=gcc -DCMAKE_INSTALL_PREFIX=/usr/local -DTA_CUDA=ON -DCMAKE_BUILD_TYPE=RelWithDebInfo && \$CMAKE --build . --target tiledarray && \$CMAKE --build . --target examples && \$CMAKE --build . --target install

# Clean up APT when done.
RUN apt-get clean && rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
Expand Down
2 changes: 1 addition & 1 deletion ci/.build-project
Original file line number Diff line number Diff line change
Expand Up @@ -89,7 +89,7 @@ if [[ "$vars" =~ \"-DBLAS_PREFERENCE_LIST=IntelMKL ]]; then
cmd "source /opt/intel/oneapi/tbb/latest/env/vars.sh"
cmd "echo TBBROOT=\$TBBROOT"
fi
if [[ "$vars" =~ \"-D([a-zA-Z]+_)?ENABLE_CUDA=(ON|TRUE|1|YES)\" ]]; then
if [[ "$vars" =~ \"-D([a-zA-Z]+_)?TA_CUDA=(ON|TRUE|1|YES)\" ]]; then
cmd "make -C /home/ValeevGroup install/cuda"
cmd "rm -fr /usr/local/bin/nvcc"
cmd "export CUDACXX=/usr/local/cuda/bin/nvcc"
Expand Down
2 changes: 1 addition & 1 deletion ci/README.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
To run CI in docker use `docker-run-ci` and give build parameters, eg:

```
$ ./ci/docker-run-ci TA_PYTHON=OFF ENABLE_CUDA=ON all check
$ ./ci/docker-run-ci TA_PYTHON=OFF TA_CUDA=ON all check
Removing previous build container: andrey.tiledarray.build

Running new build of /home/andrey/github/tiledarray on andrey.tiledarray.build
Expand Down
2 changes: 1 addition & 1 deletion ci/docker-run-ci
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

# build project via docker run, eg
# usage: docker-run-ci [ VAR=VALUE ... ] [ target ... ]
# example: ./ci/docker-run-ci TA_PYTHON=OFF ENABLE_CUDA=ON all check
# example: ./ci/docker-run-ci TA_PYTHON=OFF TA_CUDA=ON all check

project=$(basename $PWD)
image=valeevgroup/ubuntu:${VALEEVGROUP_UBUNTU_TAG:-latest}
Expand Down
2 changes: 1 addition & 1 deletion cmake/toolchains/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ export CUDA_GCC_DIR=/sw/summit/gcc/7.4.0

cmake ../../tiledarray \
-DCMAKE_TOOLCHAIN_FILE=cmake/vg/toolchains/olcf-summit-gcc-essl.cmake \
-DENABLE_CUDA=ON \
-DTA_CUDA=ON \
-DCMAKE_CUDA_HOST_COMPILER=${CUDA_GCC_DIR}/bin/g++ \
-DCUDAToolkit_ROOT=/sw/summit/cuda/10.1.243 \
-DENABLE_TBB=OFF \
Expand Down
4 changes: 2 additions & 2 deletions examples/scalapack/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@

# Create example executable

if(ENABLE_SCALAPACK)
if(TA_SCALAPACK)

foreach(_exec conversion evp)

Expand All @@ -35,4 +35,4 @@ foreach(_exec conversion evp)

endforeach()

endif(ENABLE_SCALAPACK)
endif(TA_SCALAPACK)
6 changes: 3 additions & 3 deletions external/eigen.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -6,11 +6,11 @@ include(AppendFlags)

# if CUDA is enabled (assuming CUDA version is 9 or 10) need Eigen 3.3.7
# see https://gitlab.com/libeigen/eigen/issues/1491
if (ENABLE_CUDA)
if (TA_CUDA)
set(_tiledarray_required_eigen_version 3.3.7)
else(ENABLE_CUDA)
else(TA_CUDA)
set(_tiledarray_required_eigen_version ${TA_TRACKED_EIGEN_VERSION})
endif(ENABLE_CUDA)
endif(TA_CUDA)

# Check for existing Eigen
# prefer CMake-configured-and-installed instance
Expand Down
8 changes: 4 additions & 4 deletions external/librett.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ else()
-DCMAKE_PREFIX_PATH=${LIBRETT_CMAKE_PREFIX_PATH}
-DENABLE_NO_ALIGNED_ALLOC=ON
)
if (ENABLE_CUDA)
if (TA_CUDA)
list(APPEND LIBRETT_CMAKE_ARGS
-DENABLE_CUDA=ON
-DCMAKE_CUDA_COMPILER=${CMAKE_CUDA_COMPILER}
Expand All @@ -82,7 +82,7 @@ else()
list(APPEND LIBRETT_CMAKE_ARGS "-DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}")
endif(DEFINED CMAKE_CUDA_ARCHITECTURES)
endif()
if (ENABLE_HIP)
if (TA_HIP)
list(APPEND LIBRETT_CMAKE_ARGS
-DENABLE_HIP=ON
-DCMAKE_HIP_COMPILER=${CMAKE_HIP_COMPILER}
Expand Down Expand Up @@ -178,14 +178,14 @@ set_target_properties(TiledArray_LIBRETT
INTERFACE_LINK_LIBRARIES
"$<BUILD_INTERFACE:${LIBRETT_BUILD_BYPRODUCTS}>;$<INSTALL_INTERFACE:${_LIBRETT_INSTALL_DIR}/lib/librett.${LIBRETT_DEFAULT_LIBRARY_SUFFIX}>"
)
if (ENABLE_CUDA)
if (TA_CUDA)
set_target_properties(TiledArray_LIBRETT
PROPERTIES
INTERFACE_COMPILE_DEFINITIONS
"LIBRETT_USES_CUDA=1"
)
endif()
if (ENABLE_HIP)
if (TA_HIP)
set_target_properties(TiledArray_LIBRETT
PROPERTIES
INTERFACE_COMPILE_DEFINITIONS
Expand Down
8 changes: 4 additions & 4 deletions external/umpire.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -113,7 +113,7 @@ else()
-DUMPIRE_ENABLE_FILESYSTEM=OFF)
endif()

if (ENABLE_CUDA)
if (TA_CUDA)
list(APPEND UMPIRE_CMAKE_ARGS
-DENABLE_CUDA=ON
-DCMAKE_CUDA_COMPILER=${CMAKE_CUDA_COMPILER}
Expand All @@ -134,8 +134,8 @@ else()
if (DEFINED CUDA_TOOLKIT_ROOT_DIR)
list(APPEND UMPIRE_CMAKE_ARGS "-DCUDA_TOOLKIT_ROOT_DIR=${CUDA_TOOLKIT_ROOT_DIR}")
endif()
endif(ENABLE_CUDA)
if (ENABLE_HIP)
endif(TA_CUDA)
if (TA_HIP)
list(APPEND UMPIRE_CMAKE_ARGS
-DENABLE_HIP=ON
-DCMAKE_HIP_COMPILER=${CMAKE_HIP_COMPILER}
Expand All @@ -145,7 +145,7 @@ else()
if (DEFINED CMAKE_HIP_ARCHITECTURES)
list(APPEND UMPIRE_CMAKE_ARGS "-DCMAKE_HIP_ARCHITECTURES=${CMAKE_HIP_ARCHITECTURES}")
endif(DEFINED CMAKE_HIP_ARCHITECTURES)
endif(ENABLE_HIP)
endif(TA_HIP)
if (CMAKE_TOOLCHAIN_FILE)
set(UMPIRE_CMAKE_ARGS "${UMPIRE_CMAKE_ARGS}"
"-DCMAKE_TOOLCHAIN_FILE=${CMAKE_TOOLCHAIN_FILE}"
Expand Down
2 changes: 1 addition & 1 deletion src/TiledArray/initialize.h
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ bool initialized_to_be_quiet();
/// initialization:
/// | Environment Variable | Default| Description |
/// |----------------------|--------|-------------|
/// | `TA_LINALG_BACKEND` | none | If set, chooses the linear algebra backend to use; valid values are `scalapack` (distributed library ScaLAPACK, only available if configured with `ENABLE_SCALAPACK=ON`), `lapack` (non-distributed library LAPACK, always available), and `ttg` (experimental [TTG](https://github.com/TESSEorg/TTG) backend, only implements Cholesky); the default is to choose best available backend automatically (recommended) |
/// | `TA_LINALG_BACKEND` | none | If set, chooses the linear algebra backend to use; valid values are `scalapack` (distributed library ScaLAPACK, only available if configured with `TA_SCALAPACK=ON`), `lapack` (non-distributed library LAPACK, always available), and `ttg` (experimental [TTG](https://github.com/TESSEorg/TTG) backend, only implements Cholesky); the default is to choose best available backend automatically (recommended) |
/// | `TA_LINALG_DISTRIBUTED_MINSIZE` | 4194304 | Unless `TA_LINALG_BACKEND` is set, this controls the minimum matrix size (#rows times #columns) for which the distributed backend if chosen when selecting the best available backend |
/// @warning MADWorld can only be initialized/finalized once, hence if
/// TiledArray initializes MADWorld
Expand Down
Loading