This repository contains a collection of Jupyter Notebooks covering various aspects of data analysis using Python, including data cleaning, handling missing data, visualization, and reading different file formats (CSV, Excel, SQL, HTML, etc.). The main libraries used in this repository include Pandas, NumPy, Matplotlib, and Seaborn.
└── v41bh4vr4jput-data-analysis-with-python/
├── README.md
├── Cleaning_not_null_values.ipynb
├── Handling_missing_data.ipynb
├── Pandas_Dataframe.ipynb
├── Pandas_series.ipynb
├── Matplotlib/
│ └── Visualization.ipynb
├── Reading and Extracting data/
│ └── data/
│ ├── btc-market-price.csv
│ ├── eth-price.csv
│ ├── Reading_External_data_and_Plottng.ipynb
│ └── .ipynb_checkpoints/
│ └── btc-market-price-checkpoint.csv
├── Reading CSV and TXT files/
│ ├── btc-market-price.csv
│ ├── exam_review.csv
│ ├── Main.ipynb
│ └── out.csv
├── Reading Data from Relational databases/
│ ├── chinook.db
│ └── main.ipynb
├── Reading Excel Files/
│ ├── main.ipynb
│ ├── out.xlsx
│ └── products.xlsx
└── Reading HTML tables/
└── Main.ipynb
- Cleaning_not_null_values.ipynb → Techniques for handling and cleaning data with non-null values.
- Handling_missing_data.ipynb → Methods for dealing with missing values in datasets using Pandas and NumPy.
- Pandas_Dataframe.ipynb → Introduction to Pandas DataFrames, data manipulation, and transformations.
- Pandas_series.ipynb → Understanding Pandas Series, operations, and indexing.
- Matplotlib/Visualization.ipynb → Creating various visualizations using Matplotlib and Seaborn, including bar charts, histograms, line plots, and scatter plots.
- Reading_External_data_and_Plottng.ipynb → How to read external datasets (CSV) and visualize data trends.
- btc-market-price.csv & eth-price.csv → Sample datasets for Bitcoin and Ethereum price trends.
- Reading CSV and TXT files/Main.ipynb → Techniques for reading and processing CSV and TXT files.
- Reading Data from Relational databases/main.ipynb → Using Pandas and SQLAlchemy to extract data from SQLite databases (chinook.db).
- Reading Excel Files/main.ipynb → Working with Excel files (out.xlsx, products.xlsx) using Pandas.
- Reading HTML tables/Main.ipynb → Extracting and parsing data from HTML tables.
Ensure you have Python 3.8+ installed along with the following libraries:
pip install numpy pandas matplotlib seaborn jupyterlabNavigate to the project directory and launch Jupyter Lab:
cd v41bh4vr4jput-data-analysis-with-python
jupyter lab✅ Comprehensive Data Handling – Cleaning, missing data handling, and manipulation.
✅ Data Visualization – Plotting and analyzing trends with Matplotlib & Seaborn.
✅ File Handling – Read and process CSV, Excel, SQL, and HTML tables.
✅ Real-world Data – Work with datasets related to finance, e-commerce, and reviews.