Skip to content

Commit

Permalink
readme : add usage instructions for Core ML
Browse files Browse the repository at this point in the history
  • Loading branch information
ggerganov authored Apr 15, 2023
1 parent 5e47e22 commit 3e5c49e
Showing 1 changed file with 55 additions and 1 deletion.
56 changes: 55 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ Stable: [v1.2.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.1) /
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:

- Plain C/C++ implementation without dependencies
- Apple silicon first-class citizen - optimized via Arm Neon and Accelerate framework
- Apple silicon first-class citizen - optimized via ARM NEON, Accelerate framework and [Core ML](https://github.com/ggerganov/whisper.cpp/edit/master/README.md#core-ml-support)
- AVX intrinsics support for x86 architectures
- VSX intrinsics support for POWER architectures
- Mixed F16 / F32 precision
Expand Down Expand Up @@ -225,6 +225,60 @@ make large
| medium | 1.5 GB | ~1.7 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
| large | 2.9 GB | ~3.3 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |

## Core ML support

On Apple Silicon devices, the Encoder inference can be executed on the Apple Neural Engine (ANE) via Core ML. This can result in significant
speed-up - more than x3 faster compared with CPU-only execution. Here are the instructions for generating a Core ML model and using it with `whisper.cpp`:

- Install Python dependencies needed for the creation of the Core ML model:

```bash
pip install ane_transformers
pip install openai-whisper
pip install coremltools
```

- Generate a Core ML model. For example, to generate a `base.en` model, use:

```bash
./models/generate-coreml-model.sh base.en
```

This will generate the folder `models/ggml-base.en-encoder.mlmodelc`

- Build `whisper.cpp` with Core ML support:

```bash
# using Makefile
make clean
WHISPER_COREML=1 make -j

# using CMake
cd build
cmake -DWHISPER_COREML=1 ..
```

- Run the examples as usual. For example:

```bash
./main -m models/ggml-base.en.bin -f samples/jfk.wav

...

whisper_init_state: loading Core ML model from 'models/ggml-base.en-encoder.mlmodelc'
whisper_init_state: first run on a device may take a while ...
whisper_init_state: Core ML model loaded

system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 | COREML = 1 |

...
```
The first run on a device is slow, since the ANE service compiles the Core ML model to some device-specific format.
Next runs are faster.
For more information about the Core ML implementation please refer to PR [#566](https://github.com/ggerganov/whisper.cpp/pull/566).
## Limitations
- Inference only
Expand Down

0 comments on commit 3e5c49e

Please sign in to comment.