Template for machine learning and deep learning projects.
- Nvidia graphics card with CUDA support http://www.geforce.com/hardware/technology/cuda/
- Nvidia driver http://www.geforce.com/drivers
- Docker https://www.docker.com/get-docker
- Docker Compose https://docs.docker.com/compose/install/
- Nvidia Modprobe
sudo apt-get install nvidia-modprobe
Run:
Check docker volume ls and run nvidia-docker run nvidia/cuda nvidia-smi if driver volume is empty
Tensorflow-gpu
- rlxs/tensorflow:0.12.1-gpu-py2
- rlxs/tensorflow:0.12.1-gpu-py3
- rlxs/tensorflow:1.1.0-gpu-py2
- rlxs/tensorflow:1.1.0-gpu-py3
OpenCV 3.2.0 with CUDA support + Tensorflow-gpu 1.1.0 + Python2.7/3.5
- rlxs/opencv-cuda-tf
OpenCV 2.4.9.1 + Tensorflow-gpu 1.1.0 + Python2.7 (Jupyter/matplotlib/numpy/scipy)
- rlxs/tf-cv2
Torch 0.1.12_2 + Python2.7
- rlxs/cuda-torch:py2
Test GPU support in Tensorflow
Docker OpenCV GUI test and webcam access
Tensorbox https://github.com/TensorBox/TensorBox
-
Run Download data to download video datasets for training