-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
08d0e37
commit 5240c68
Showing
1 changed file
with
31 additions
and
181 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,198 +1,48 @@ | ||
// MIT License | ||
|
||
// Copyright (c) [2024] Sermet Pekin | ||
|
||
// Permission is hereby granted, free of charge, to any person obtaining a copy | ||
// of this software and associated documentation files (the "Software"), to deal | ||
// in the Software without restriction, including without limitation the rights | ||
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
// copies of the Software, and to permit persons to whom the Software is | ||
// furnished to do so, subject to the following conditions: | ||
|
||
// The above copyright notice and this permission notice shall be included in | ||
// all copies or substantial portions of the Software. | ||
|
||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | ||
// THE SOFTWARE. | ||
// */ | ||
|
||
#include <iostream> | ||
#include <random> | ||
#include <utility> | ||
|
||
#include "micrograd.hpp" | ||
|
||
#include "value.hpp" | ||
#include "mlp.hpp" | ||
using namespace microgradCpp; | ||
|
||
/* | ||
g++ -g -o main main.cpp | ||
g++ -g -std=c++17 -Iinclude -O2 -o main main.cpp | ||
clang++ -std=c++17 -Iinclude -g -o main main.cpp | ||
(lldb) breakpoint set --file main.cpp --line 75 | ||
(lldb) run | ||
(lldb) bt | ||
(lldb) print some_variable | ||
*/ | ||
|
||
#include <iostream> | ||
#include <vector> | ||
#include <memory> | ||
// #include "value.hpp" // Assuming Value class is defined here | ||
// #include "mlp.hpp" // Assuming MLP class is defined here | ||
|
||
// using ColRows = std::vector<std::vector<std::shared_ptr<Value>>>; | ||
// using DatasetType = std::vector<std::pair<std::vector<std::shared_ptr<Value>>, std::vector<std::shared_ptr<Value>>>>; | ||
|
||
#include <iostream> | ||
#include <vector> | ||
#include <memory> | ||
#include <iomanip> | ||
#include <sstream> | ||
#include "value.hpp" // Assuming Value class is defined here | ||
#include "mlp.hpp" // Assuming MLP class is defined here | ||
|
||
// using ColRows = std::vector<std::vector<std::shared_ptr<Value>>>; | ||
// using DatasetType = std::vector<std::pair<std::vector<std::shared_ptr<Value>>, std::vector<std::shared_ptr<Value>>>>; | ||
|
||
int main() | ||
{ | ||
|
||
DatasetType dataset = get_iris2(); | ||
|
||
shuffle(dataset); | ||
|
||
// DatasetType dataset = get_iris(); | ||
DataFrame df; | ||
df.from_csv("./data/iris.csv"); | ||
df.normalize(); | ||
df.encode_column("variety"); | ||
df.print(); | ||
df.shuffle(); | ||
df.print(); | ||
// return 0; | ||
// stop(); | ||
// return 0; | ||
// shuffle(dataset); | ||
double TRAIN_SIZE{0.8}; | ||
|
||
// Split into train and test sets (80-20 split) | ||
ColRows train_inputs, train_targets; | ||
ColRows test_inputs, test_targets; | ||
|
||
train_test_split(dataset, TRAIN_SIZE, train_inputs, train_targets, test_inputs, test_targets); | ||
|
||
// Create MLP model | ||
// Input: 4 features, hidden layers: [7,7], output: 3 classes | ||
// Define the model and hyperparameters | ||
// MLP model(4, {10, 10, 3}); | ||
MLP model(4, {7, 7, 3}); | ||
|
||
// Validate dataset and model | ||
if (!validate_dataset_and_model(dataset, model, TRAIN_SIZE)) | ||
{ | ||
std::cerr << "Validation failed. Exiting." << std::endl; | ||
return 1; | ||
} | ||
|
||
// Create SGD optimizer with a learning rate of 0.005 | ||
SGD optimizer(0.01); | ||
|
||
int epochs = 100; | ||
|
||
int x = 0; | ||
std::cout << "Epoch: " << epochs << ", Sample: " << x << std::endl; | ||
|
||
// Validate input size | ||
std::cout << "Input size: " << train_inputs[x].size() << std::endl; | ||
std::cout << "Target size: " << train_targets[x].size() << std::endl; | ||
|
||
for (int epoch = 0; epoch < epochs; ++epoch) | ||
{ | ||
double total_loss = 0.0; | ||
|
||
// Training loop | ||
for (size_t i = 0; i < train_inputs.size(); ++i) | ||
{ | ||
|
||
// Forward pass (training=true to possibly enable dropout or other training-specific behavior in MLP) | ||
auto predictions = model.forward(train_inputs[i], true); | ||
|
||
// Compute Cross-Entropy Loss | ||
auto loss = Loss::cross_entropy(predictions, train_targets[i]); | ||
total_loss += loss->data; | ||
|
||
// Backpropagation | ||
optimizer.zero_grad(model.parameters()); | ||
loss->backward(); | ||
|
||
// Update weights | ||
optimizer.step(model.parameters()); | ||
} | ||
|
||
std::cout << "Epoch " << epoch + 1 << "/" << epochs << ", Loss: " << total_loss / train_inputs.size() << std::endl; | ||
|
||
// Evaluate test accuracy every 10 epochs and on the last epoch | ||
if (epoch % 10 == 0 || epoch == epochs - 1) | ||
{ | ||
int correct = 0; | ||
for (size_t i = 0; i < test_inputs.size(); ++i) | ||
{ | ||
// Forward pass in evaluation mode (e.g., no dropout) | ||
auto predictions = model.forward(test_inputs[i], false); | ||
|
||
// Find predicted class (the index with max value) | ||
int predicted_class = 0; | ||
double max_value = predictions[0]->data; | ||
for (size_t j = 1; j < predictions.size(); ++j) | ||
{ | ||
if (predictions[j]->data > max_value) | ||
{ | ||
max_value = predictions[j]->data; | ||
predicted_class = static_cast<int>(j); | ||
} | ||
} | ||
|
||
// Check if prediction matches the target | ||
for (size_t j = 0; j < test_targets[i].size(); ++j) | ||
{ | ||
if (test_targets[i][j]->data == 1.0 && j == predicted_class) | ||
{ | ||
correct++; | ||
break; | ||
} | ||
} | ||
} | ||
|
||
double accuracy = static_cast<double>(correct) / test_inputs.size(); | ||
std::cout << "Epoch " << epoch + 1 << ": Test Accuracy = " << accuracy * 100.0 << "%" << std::endl; | ||
} | ||
} | ||
|
||
auto params = model.parameters(); | ||
double learning_rate = 0.01; | ||
int epochs; // = 100; | ||
std::cout << "Epoch : ?"; | ||
std::cin >> epochs; | ||
// Initialize Adam optimizer | ||
AdamOptimizer optimizer(params, learning_rate); | ||
// Train and evaluate the model | ||
// train_eval(dataset, TRAIN_SIZE, model, learning_rate, epochs); | ||
// train_eval(dataset, TRAIN_SIZE, model, optimizer, epochs); | ||
// Train and evaluate the model | ||
train_eval(df, TRAIN_SIZE, model, optimizer, epochs); | ||
return 0; | ||
} | ||
|
||
/* | ||
*/ | ||
/* | ||
Notes | ||
----------- | ||
g++ -std=c++17 -Iinclude -O2 -o main main.cpp | ||
// or | ||
make run | ||
g++ -std=c++20 -Iinclude -O2 -g -o main easy_df.cpp | ||
g++ -std=c++20 -Iinclude -g -O0 -o main easy_df.cpp | ||
lldb ./main | ||
r | ||
bt | ||
... g++ -std=c++20 -fsanitize=address -g -o main main.cpp | ||
Address Sanitizer will provide detailed error messages if there are invalid memory accesses. | ||
g++ -std=c++20 -fsanitize=address -Iinclude -g -O0 -o main easy_df.cpp | ||
./main | ||
*/ | ||
*/ |