forked from vinayakumarr/CDMC2016
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
37d79df
commit dc86909
Showing
31 changed files
with
2,458 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
import keras.preprocessing.text | ||
import numpy as np | ||
import pandas as pd | ||
np.random.seed(1337) # for reproducibility | ||
from keras.preprocessing import sequence | ||
from keras.models import Sequential | ||
from keras.layers.core import Dense, Activation | ||
from keras.layers.embeddings import Embedding | ||
from keras.layers.recurrent import LSTM | ||
from sklearn.metrics import (precision_score, recall_score,f1_score, accuracy_score,mean_squared_error,mean_absolute_error) | ||
from sklearn import metrics | ||
from sklearn.metrics import roc_auc_score | ||
from keras.utils.np_utils import to_categorical | ||
from sklearn.cross_validation import train_test_split | ||
from keras.layers import Dropout | ||
from sklearn.cross_validation import StratifiedKFold | ||
from sklearn.cross_validation import cross_val_score | ||
from keras.wrappers.scikit_learn import KerasClassifier | ||
|
||
print("Loading") | ||
|
||
traindata = pd.read_csv('space/CDMC2016_AndroidLabel.Train.csv', header=None) | ||
|
||
|
||
x = traindata.iloc[:,1] | ||
y = traindata.iloc[:,0] | ||
|
||
|
||
tk = keras.preprocessing.text.Tokenizer(nb_words=5000, filters=keras.preprocessing.text.base_filter(), lower=True, split=",") | ||
tk.fit_on_texts(x) | ||
X_train = tk.texts_to_sequences(x) | ||
|
||
|
||
X_train=np.array(X_train) | ||
y_train = np.array(y) | ||
|
||
|
||
batch_size = 64 | ||
max_len = 500 | ||
print "max_len ", max_len | ||
print('Pad sequences (samples x time)') | ||
|
||
X_train = sequence.pad_sequences(X_train, maxlen=max_len) | ||
|
||
max_features = 5000 | ||
model = Sequential() | ||
print('Build model...') | ||
embedding_vecor_length = 32 | ||
|
||
def create_model(): | ||
model = Sequential() | ||
model.add(Embedding(max_features, embedding_vecor_length, input_length=max_len)) | ||
model.add(Dropout(0.2)) | ||
model.add(LSTM(100)) | ||
model.add(Dropout(0.2)) | ||
model.add(Dense(1)) | ||
model.add(Activation('sigmoid')) | ||
model.compile(loss='binary_crossentropy', optimizer='adam',metrics=['accuracy']) | ||
print(model.summary()) | ||
return model | ||
|
||
|
||
# fix random seed for reproducibility | ||
seed = 7 | ||
np.random.seed(seed) | ||
|
||
model = KerasClassifier(build_fn=create_model, nb_epoch=20, batch_size=32) | ||
|
||
# evaluate using 10-fold cross validation | ||
kfold = StratifiedKFold(y=y_train, n_folds=10, shuffle=True, random_state=seed) | ||
results = cross_val_score(model, X_train, y_train, cv=kfold) | ||
print(results.mean()) | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
import keras.preprocessing.text | ||
import numpy as np | ||
import pandas as pd | ||
np.random.seed(1337) # for reproducibility | ||
from keras.preprocessing import sequence | ||
from keras.models import Sequential | ||
from keras.layers.core import Dense, Activation | ||
from keras.layers.embeddings import Embedding | ||
from keras.layers.recurrent import LSTM | ||
from sklearn.metrics import (precision_score, recall_score,f1_score, accuracy_score,mean_squared_error,mean_absolute_error) | ||
from sklearn import metrics | ||
from sklearn.metrics import roc_auc_score | ||
from keras.utils.np_utils import to_categorical | ||
from sklearn.cross_validation import train_test_split | ||
from keras.layers import Dropout | ||
from keras.layers import LSTM | ||
from keras.layers.convolutional import Convolution1D | ||
from keras.layers.convolutional import MaxPooling1D | ||
from keras.layers.embeddings import Embedding | ||
from keras.preprocessing import sequence | ||
from theano.tensor.shared_randomstreams import RandomStreams | ||
from sklearn.cross_validation import StratifiedKFold | ||
from sklearn.cross_validation import cross_val_score | ||
from keras.wrappers.scikit_learn import KerasClassifier | ||
|
||
|
||
# fix random seed for reproducibility | ||
np.random.seed(7) | ||
srng = RandomStreams(7) | ||
|
||
print("Loading") | ||
|
||
traindata = pd.read_csv('space/CDMC2016_AndroidLabel.Train.csv', header=None) | ||
|
||
|
||
x = traindata.iloc[:,1] | ||
y = traindata.iloc[:,0] | ||
|
||
|
||
tk = keras.preprocessing.text.Tokenizer(nb_words=5000, filters=keras.preprocessing.text.base_filter(), lower=True, split=",") | ||
tk.fit_on_texts(x) | ||
X_train = tk.texts_to_sequences(x) | ||
|
||
|
||
X_train=np.array(X_train) | ||
y_train = np.array(y) | ||
|
||
|
||
batch_size = 64 | ||
max_len = 500 | ||
print "max_len ", max_len | ||
print('Pad sequences (samples x time)') | ||
|
||
X_train = sequence.pad_sequences(X_train, maxlen=max_len) | ||
|
||
|
||
|
||
max_features = 5000 | ||
embedding_vecor_length = 32 | ||
|
||
|
||
def create_model(): | ||
model = Sequential() | ||
model.add(Embedding(max_features, embedding_vecor_length, input_length=max_len)) | ||
model.add(Convolution1D(nb_filter=32, filter_length=3, border_mode='same', activation='relu')) | ||
model.add(MaxPooling1D(pool_length=2)) | ||
model.add(LSTM(100)) | ||
model.add(Dense(1, activation='sigmoid')) | ||
model.compile(loss='binary_crossentropy', optimizer='adam',metrics=['accuracy']) | ||
print(model.summary()) | ||
return model | ||
|
||
# fix random seed for reproducibility | ||
seed = 7 | ||
np.random.seed(seed) | ||
|
||
model = KerasClassifier(build_fn=create_model, nb_epoch=20, batch_size=32) | ||
|
||
# evaluate using 10-fold cross validation | ||
kfold = StratifiedKFold(y=y_train, n_folds=10, shuffle=True, random_state=seed) | ||
results = cross_val_score(model, X_train, y_train, cv=kfold) | ||
print(results.mean()) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
import keras.preprocessing.text | ||
import numpy as np | ||
import pandas as pd | ||
np.random.seed(1337) # for reproducibility | ||
from keras.preprocessing import sequence | ||
from keras.models import Sequential | ||
from keras.layers.core import Dense, Activation | ||
from keras.layers.embeddings import Embedding | ||
from keras.layers.recurrent import LSTM | ||
from sklearn.metrics import (precision_score, recall_score,f1_score, accuracy_score,mean_squared_error,mean_absolute_error) | ||
from sklearn import metrics | ||
from sklearn.metrics import roc_auc_score | ||
|
||
|
||
print("Loading") | ||
|
||
#traindata = pd.read_csv('CDMC2016_AndroidLabel.Train.csv', header=None) | ||
#testdata = pd.read_csv('CDMC2016_AndroidPermissions.Test.csv', header=None) | ||
|
||
traindata = pd.read_csv('space/CDMC2016_AndroidLabel.Train.csv', header=None) | ||
testdata = pd.read_csv('space/CDMC2016_AndroidPermissions.Test.csv', header=None) | ||
|
||
x = traindata.iloc[:,1] | ||
y = traindata.iloc[:,0] | ||
t = testdata.iloc[:,0] | ||
|
||
|
||
tk = keras.preprocessing.text.Tokenizer(nb_words=500,filters=keras.preprocessing.text.base_filter(), lower=True, split=" ") | ||
tk.fit_on_texts(x) | ||
|
||
x = tk.texts_to_sequences(x) | ||
print(x) | ||
''' | ||
tk = keras.preprocessing.text.Tokenizer(nb_words=500, filters=keras.preprocessing.text.base_filter(), lower=True, split=" ") | ||
tk.fit_on_texts(t) | ||
t = tk.texts_to_sequences(t) | ||
print(t) | ||
''' | ||
''' | ||
max_len = 200 | ||
print "max_len ", max_len | ||
print('Pad sequences (samples x time)') | ||
x = sequence.pad_sequences(x, maxlen=max_len) | ||
t = sequence.pad_sequences(t, maxlen=max_len) | ||
max_features = 500 | ||
model = Sequential() | ||
print('Build model...') | ||
model = Sequential() | ||
model.add(Embedding(max_features, 128, input_length=max_len, dropout=0.1)) | ||
model.add(LSTM(128, dropout_W=0.1, dropout_U=0.1)) | ||
model.add(Dense(1)) | ||
model.add(Activation('sigmoid')) | ||
model.compile(loss='binary_crossentropy', optimizer='adam',metrics=['accuracy']) | ||
model.fit(x, y, batch_size=32, nb_epoch=30) | ||
score, acc = model.evaluate(x, y, batch_size=32) | ||
print('Test score:', score) | ||
print('Test accuracy:', acc) | ||
y_pred = model.predict_classes(t) | ||
np.savetxt('output.txt', y_pred, fmt='%01d') | ||
''' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
import keras.preprocessing.text | ||
import numpy as np | ||
import pandas as pd | ||
np.random.seed(1337) # for reproducibility | ||
from keras.preprocessing import sequence | ||
from keras.models import Sequential | ||
from keras.layers.core import Dense, Activation | ||
from keras.layers.embeddings import Embedding | ||
from keras.layers.recurrent import LSTM | ||
from sklearn.metrics import (precision_score, recall_score,f1_score, accuracy_score,mean_squared_error,mean_absolute_error) | ||
from sklearn import metrics | ||
from sklearn.metrics import roc_auc_score | ||
from keras.utils.np_utils import to_categorical | ||
from sklearn.cross_validation import train_test_split | ||
from keras.layers import Dropout | ||
from keras import callbacks | ||
from keras.callbacks import ModelCheckpoint, EarlyStopping, CSVLogger, ReduceLROnPlateau | ||
|
||
|
||
|
||
print("Loading") | ||
|
||
traindata = pd.read_csv('space/CDMC2016_AndroidLabel.Train.csv', header=None) | ||
|
||
|
||
x = traindata.iloc[:,1] | ||
y = traindata.iloc[:,0] | ||
|
||
|
||
tk = keras.preprocessing.text.Tokenizer(nb_words=5000, filters=keras.preprocessing.text.base_filter(), lower=True, split=",") | ||
tk.fit_on_texts(x) | ||
X_train = tk.texts_to_sequences(x) | ||
|
||
|
||
|
||
|
||
X_train=np.array(X_train) | ||
|
||
|
||
|
||
y_train = np.array(y) | ||
|
||
|
||
batch_size = 64 | ||
max_len = 500 | ||
print "max_len ", max_len | ||
print('Pad sequences (samples x time)') | ||
|
||
X_train = sequence.pad_sequences(X_train, maxlen=max_len) | ||
|
||
|
||
#y_train= to_categorical(y_train) | ||
#y_test = to_categorical(y_test) | ||
|
||
|
||
max_features = 5000 | ||
model = Sequential() | ||
print('Build model...') | ||
embedding_vecor_length = 32 | ||
|
||
model = Sequential() | ||
model.add(Embedding(max_features, embedding_vecor_length, input_length=max_len)) | ||
model.add(Dropout(0.2)) | ||
model.add(LSTM(100)) | ||
model.add(Dense(1)) | ||
model.add(Activation('sigmoid')) | ||
|
||
model.compile(loss='binary_crossentropy', optimizer='adam',metrics=['accuracy']) | ||
print(model.summary()) | ||
checkpointer = callbacks.ModelCheckpoint(filepath="logs/checkpoint-{epoch:02d}.hdf5", verbose=1, save_best_only=True, monitor='val_acc',mode='max') | ||
csv_logger = CSVLogger('logs/training_set_iranalysis.csv',separator=',', append=False) | ||
|
||
model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=1000, | ||
validation_data=(X_train, y_train), shuffle=True,callbacks=[checkpointer,csv_logger]) | ||
score, acc = model.evaluate(X_train, y_train, | ||
batch_size=32) | ||
print('Test score:', score) | ||
print('Test accuracy:', acc) | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
import keras.preprocessing.text | ||
import numpy as np | ||
import pandas as pd | ||
np.random.seed(1337) # for reproducibility | ||
from keras.preprocessing import sequence | ||
from keras.models import Sequential | ||
from keras.layers.core import Dense, Activation | ||
from keras.layers.embeddings import Embedding | ||
from keras.layers.recurrent import LSTM | ||
from sklearn.metrics import (precision_score, recall_score,f1_score, accuracy_score,mean_squared_error,mean_absolute_error) | ||
from sklearn import metrics | ||
from sklearn.metrics import roc_auc_score | ||
from keras.utils.np_utils import to_categorical | ||
from sklearn.cross_validation import train_test_split | ||
from keras.layers import Dropout | ||
|
||
print("Loading") | ||
|
||
traindata = pd.read_csv('space/CDMC2016_AndroidLabel.Train.csv', header=None) | ||
testdata = pd.read_csv('train_test.csv', header=None) | ||
|
||
x = traindata.iloc[:,1] | ||
y = traindata.iloc[:,0] | ||
xt = testdata.iloc[:,1] | ||
yt = testdata.iloc[:,0] | ||
|
||
|
||
tk = keras.preprocessing.text.Tokenizer(nb_words=5000, filters=keras.preprocessing.text.base_filter(), lower=True, split=",") | ||
tk.fit_on_texts(x) | ||
X_train = tk.texts_to_sequences(x) | ||
|
||
|
||
tk = keras.preprocessing.text.Tokenizer(nb_words=5000, filters=keras.preprocessing.text.base_filter(), lower=True, split=",") | ||
tk.fit_on_texts(xt) | ||
X_test = tk.texts_to_sequences(xt) | ||
|
||
|
||
|
||
X_train=np.array(X_train) | ||
X_test=np.array(X_test) | ||
|
||
|
||
y_train = np.array(y) | ||
y_test = np.array(yt) | ||
|
||
batch_size = 64 | ||
max_len = 500 | ||
print "max_len ", max_len | ||
print('Pad sequences (samples x time)') | ||
|
||
X_train = sequence.pad_sequences(X_train, maxlen=max_len) | ||
X_test = sequence.pad_sequences(X_test, maxlen=max_len) | ||
|
||
max_features = 5000 | ||
model = Sequential() | ||
print('Build model...') | ||
embedding_vecor_length = 32 | ||
|
||
model = Sequential() | ||
model.add(Embedding(max_features, embedding_vecor_length, input_length=max_len)) | ||
model.add(Dropout(0.2)) | ||
model.add(LSTM(100)) | ||
model.add(Dropout(0.2)) | ||
model.add(Dense(1)) | ||
model.add(Activation('sigmoid')) | ||
|
||
model.compile(loss='binary_crossentropy', optimizer='adam',metrics=['accuracy']) | ||
print(model.summary()) | ||
|
||
model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=50,validation_data=(X_test, y_test),shuffle=True) | ||
score, acc = model.evaluate(X_test, y_test) | ||
|
||
print('Test score:', score) | ||
print('Test accuracy:', acc) | ||
y_pred = model.predict_classes(X_test) | ||
np.savetxt('output.txt', np.transpose([y_test,y_pred]), fmt='%01d') | ||
|
Oops, something went wrong.