Skip to content

Conversation

@sopheakim
Copy link

@sopheakim sopheakim commented Jul 5, 2025

Enhance Performance Metrics Collection for Adaptive Learning Process

Description

Task

Add basic performance metrics collection

Acceptance Criteria

  • Lightweight metrics collection
  • Performance tracking
  • Thread-safe implementation
  • Configurable history
  • Multiple metric types
  • Error handling
  • Logging support

Summary of Work

Implement and document a comprehensive performance metrics collection system for the Adaptive Learning Process (ALP).

Key Improvements:

  • Implemented a flexible, thread-safe metrics collection mechanism
  • Supports multiple metric types (performance, resource usage, error rate, learning progress)
  • Provides configurable history tracking and logging
  • Offers methods for recording, retrieving, and analyzing metrics

Detailed Changes:

  1. Created PerformanceMetricsCollector class with robust metric tracking
  2. Implemented configurable max history for metrics
  3. Added support for different metric types via MetricType enum
  4. Provided methods for:
    • Recording metrics (record_metric)
    • Retrieving metric history (get_metric_history)
    • Getting latest metric (get_latest_metric)
    • Calculating metric averages (calculate_metric_average)

Acceptance Criteria:

  • Implement a lightweight metrics collection system
  • Support tracking performance characteristics of learning cycles
  • Ensure thread-safe metric recording
  • Provide configurable history tracking
  • Support multiple metric types
  • Implement comprehensive error handling
  • Add logging capabilities for metrics

Changes Made

  • Created src/metrics_collector.py with PerformanceMetricsCollector class
  • Implemented MetricType enum for categorizing metrics
  • Added MetricRecord dataclass for structured metric storage
  • Implemented methods for recording, retrieving, and analyzing metrics
  • Added comprehensive logging and error handling

Tests

  • Verified basic metric recording functionality
  • Tested max history limitation for metrics
  • Checked latest metric retrieval
  • Validated metric average calculation
  • Tested recording different metric types
  • Verified behavior with non-existent metrics

Signatures

Staking Key

8hAhdRrEs8mbVnN2douviNWjQ2xXgeb31KQNAa2yTbVg: 2PtxXmBSv7GPnojZ6A9xgGzvM8FJTX544PBP2p7X3aKSw29MHFHaCByocnXdUSHBkkehwUqYh6dP6FS8TWyfxXTBLfMk6bp54xTfRudjrzfK5knzfKGS1jSrgRVMxbhSUPop7PENFfw33T2AMDRufJrdmFv4cuvQtTys92x3HDySBycL9MRCEENK46VrKe3oxCWGWdTgRLByq8xRkLFh9mmMsyYRkAneZhfy65s1tSLb4ftLGNkK3LiYEYZieSjhhG4eGFbF3nruQuu7DxLSne7gKR97RFRoq3Tjw9665cFmj57ZdtdGeyMHUQzEmjCfdmGD7ag8mrGQD39KT89N21zLruBZbFigZs8FUW6invENHwiZvgiVm9uSCh4i9TMLCtdfEvRarGNQ7Hb96TKvm8s4R8yd5ngavvA8

Public Key

43bZxBBPosBCxfy982VaGcrTgT3Ff4wwK3hcZSEXGVUn: 33KeH2sJjSzvGkLganJumJ7Fm7sSmyYazC27kut5EutWZSSTxdD461tNjpufYhETdJUs3PKL9aAaYTcDwc1C9jkVjsmmiGd5yhHazJuYFitySokBTeSKmEFpCE2crQ7NnyzGkjpTje2FhJ7jN11gY5qxkWVKkeCQWdpoAStpXccmH83ThU6VS2kW4xE7FEwWMTRmAHXZgdHdaARUGGcfFGXawjpcEifdHdbUzcx5hiKqz5PFzrrToz15a3zmEUk9qYpExG4cU9CzyFxQMSMrZA3YVhWPHHHcSSwkamGWFfnkgr4UaWB4WZFaSv9vJ5ey7rZsFxXzjq2Mpx2eXLQDgu13Ak5MHm1hmJ2y5KqMtshVTcSuTyvZq9CZ51NZDihWdVLgNM7sp6Qqvqm9VZ5J1vd96DkKRSBemwAk

@sopheakim sopheakim changed the title [WIP] Implement Basic Performance Metrics Collection for ALP Enhance Performance Metrics Collection for Adaptive Learning Process Jul 5, 2025
@sopheakim sopheakim marked this pull request as ready for review July 5, 2025 11:06
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant