Skip to content

Conversation

@Merango
Copy link

@Merango Merango commented Jul 5, 2025

Implement Core Iteration Tracking Mechanism for Adaptive Learning Process

Description

Task

Implement core iteration tracking mechanism for Adaptive Learning Process (ALP), creating a robust system to track and manage iterations with comprehensive state management.

Acceptance Criteria

  • Support tracking of current iteration count
  • Implement iteration status tracking
  • Provide methods for starting and completing iterations
  • Support optional maximum iteration limit
  • Enable manual termination of iteration process
  • Add reset functionality
  • Include comprehensive logging

Summary of Work

This pull request implements a robust iteration tracking mechanism for the Adaptive Learning Process (ALP) that provides flexible state management and iteration control.

Key Implementation Details

Core Components

  • Created IterationState dataclass to manage iteration tracking
  • Implemented IterationStatus enum to represent different iteration states
  • Provided methods for starting, completing, and terminating iterations

Features

  • Dynamic iteration tracking with optional maximum iteration limit
  • Comprehensive state management
  • Logging of iteration events
  • Metadata storage for additional context
  • Flexible termination and reset capabilities

Implemented Methods

  • start_iteration(): Begins a new iteration, respecting max iteration limit
  • complete_iteration(): Marks current iteration as complete
  • terminate(): Forcibly stops iteration process with optional reason
  • reset(): Restores iteration state to initial configuration

Testing Approach

  • Comprehensive unit tests covering various scenarios
  • Validated initialization, iteration progression, termination, and reset
  • Tested edge cases like max iteration limits
  • Ensured proper state transitions and logging

Important Notes

  • Logging is implemented to track iteration events
  • Metadata can store additional context about iterations
  • Designed for extensibility and easy integration with other ALP components

Changes Made

  • Created src/iteration_tracker.py with IterationState class
  • Implemented IterationStatus enum for tracking iteration states
  • Added methods for start_iteration(), complete_iteration(), terminate(), and reset()
  • Included logging for iteration events
  • Supported optional max_iterations configuration
  • Implemented metadata storage for additional iteration context

Tests

  • Verified initial state initialization
  • Tested iteration progression with and without max iterations
  • Validated iteration start and complete methods
  • Confirmed termination functionality
  • Checked reset method restores initial state
  • Ensured proper logging and metadata tracking

Signatures

Staking Key

84mPEB3qLaB2KQr1RXxNgYDF5DSv5ZyuDPpb9qeeNyyT: 78Xtzz19f37KzHRX4HZuQddSnhdvca9jy9Tf9bR34doxFvMPfGYrN3DkeYWeCkwuFQwdEppSnb39UoWBbVZevwzrvbAhErkyNuPaLzCcPP2wZBAfdAB8uDBp6N7jNkd966pe5mdwCXchT6yZEQx5Q95QKpTeaerdAAC9XCsjmDzrQgAcYCVXinkRjzhrHrQYcsBYcQtbgwSyskeTiXC8XAbEAq3gNstmeYs8pYSQrYYDEq32otnmfSiMaNdP2M1YWweYeBaWYysAxfEUhVAzo33s3D6deEpJYKDBvS9wch63Re9SeQmcyqojGijueMEHrPw7x682z6wrcms7NzoN1YZXvSVwVk54L7gmtnWDkadTLWUFeG6Yh3ahvaNwJdDw43hWbSboFCbHvAk5Xnhons2nF9d9qP1mN

Public Key

FLcUWedFSfvYeGjtnoXqgNtvtqEBCKwUK7Qn48hGnwsk: 6QWgQtX2uoebTZuWhXfo99dYnSdZoFAQpdu2X33UHr29p9xuq7MFL88tZqjkPY1NGxxP83wz7f2EgjsSE64DJ5gDQNKMXkGs5m2Q8Ymw9imBxxNx1CZLkfsp4A5toZB84rRKszdatCH8MkQmceVnrRygUyrVRLfmh1fo1VJs8Ted1NGyJ11QVycUDP1e1fVLtZ9rJjtu5DCzh3J2RbGHJEa5skk8MXxkduhEvnCFAB1yoJhpC2Nu8cb81o56FFHa5wVms9yKrmkSDgFtujQ2BmnEQ2yTdXzh3uwvTqCeZ6Cfs3tt5KR2bZyUWuHMky8xki8hrGrF3oh1KB7NF8QvMftd2Jt6vkFg7pZgfWyX7VEgUkRWVRSu9pSMQkVQvuYLxATeoZUgFKBdc1o94MoiZmTqX2kytSLeQ

@Merango Merango changed the title [WIP] Implement Core Iteration Tracking Mechanism for Adaptive Learning Process Implement Core Iteration Tracking Mechanism for Adaptive Learning Process Jul 5, 2025
@Merango Merango marked this pull request as ready for review July 5, 2025 10:44
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant