Skip to content

Conversation

@Santix1234
Copy link
Owner

@Santix1234 Santix1234 commented Jul 5, 2025

Implement Lightweight Performance Metrics Collection for ALP Learning Cycles

Description

Task

Add basic performance metrics collection

Acceptance Criteria

  • Performance metrics can track total iterations
  • Execution time is accurately measured
  • Per-iteration times are recorded
  • Performance summary provides comprehensive metrics
  • Metrics can be reset to initial state
  • Error handling prevents incorrect usage
  • Metrics collection has minimal performance overhead

Summary of Work

This pull request adds a comprehensive performance metrics collection system for the Adaptive Learning Process (ALP) to track and report performance characteristics of learning cycles.

Key Changes

  • Implemented PerformanceMetrics class in src/alp/metrics/performance.py
  • Added robust performance tracking mechanisms
  • Included comprehensive error handling and state management
  • Developed unit tests to validate metrics collection functionality

Implementation Details

Performance Metrics Class

  • Tracks total iterations and execution time
  • Supports per-iteration time tracking
  • Provides detailed performance summary statistics
  • Includes methods for:
    • Starting/ending iterations
    • Calculating performance metrics
    • Resetting metrics state

Metrics Tracked

  • Total iterations
  • Total execution time
  • Average iteration time
  • Minimum iteration time
  • Maximum iteration time
  • Iteration time standard deviation

Testing Approach

  • Comprehensive unit tests cover:
    • Basic metrics flow
    • Reset functionality
    • Edge cases (no iterations)
    • Error handling
  • Tests simulate realistic iteration scenarios
  • Validates accuracy of performance calculations

Future Improvements

  • Potential expansion to track additional performance metrics
  • Support for more granular resource utilization tracking

Changes Made

  • Created comprehensive PerformanceMetrics class in src/alp/metrics/performance.py
  • Implemented methods for tracking iteration performance
  • Added error handling for incorrect method usage
  • Created get_performance_summary() method for detailed metrics reporting
  • Developed reset() method to clear performance tracking state
  • Added type hints and docstrings for clarity

Tests

  • Test basic performance metrics tracking flow
  • Verify metrics reset functionality
  • Check performance summary for no iterations
  • Validate error handling for incorrect method calls
  • Test performance metrics for single iteration
  • Ensure accurate time tracking and statistical calculations

Signatures

Staking Key

DKCEYXWcoJrRVt9kB7nXZQkeL2MrNxobmbsWC8R3QWA8: 6Uj5izuSnZudcTpVepYow6CTUAfPc9igAw6ssjVS99oFeFWDjH6NBk5d54skkyBerfRU8dQjdugwmrVm5pNYHGhb7RTH2XtPcKru15YxbwHo9wyCiFsPBFAaLTRAkkoqa4D4rUJZoco4oW1cZrV2m6xYSppfLdp2vCNJwuQvhUtLfJtE1YCjkEBBRqV7fHmfKSP3qipkdphzTW3BVyC9NLBetAGaYo8XNUt6p3jHoht9TVnYuRaYm4m8FBXuiuycJHvtXWEVGuJRt7dZWH2Lu8CT5kzU8J3XHexzFJFmCf3kxFVnYpaN4eaRpRyCzwGYnNA6PoA5o1yVF7uf4U4iPGPHRrPX3aXMcdUKYvgsF5mjCRcStnqss3wrm2Nh6PAtK293fNRTi1kdrDy9zngtA1yybcmCEwxmMif24

Public Key

BLkTvPfFXvR52AK1EoHFaPyE1eDy6Mr5GvgWAbFMvK6x: 26QTD6HLeg5P6ouiq9vtuEMeL9BecD9NrrcWggB7tqWuRAAyzsXYWyDoMYX9eMxu1NA6Eo2oJLM2uLpAiPqrgznoJx72naKsQ2hGYKL3nRvJiKpsHfXjrnSVQ6DnLukQZhAXSk4AauFPAgnRdp7RfJH2jnnbhVrHA5fAoweEb6oeR5JQbz9QodpSJN9fdYiiR55uUQfietFVNuSfNdVcpz7Rzw6RBz63zsXjUrWP97jF5v7UA6wrZn4ya37Cq1zQtMmrJ7NQ6ix2sRpEg2kuMbDUGVqXSaWADWVaLXGcQcZFjDUoAQC8UJArSyxbG2KYH25zMZMMvSBXEKaP2RKHnjVm7N4e2cW7pvvaSBCKpZ7Uv2cagveGefEJexzwzuzD5e2gmPqYVdB5TXMuVZhKyGuDRa5oFbF39yyac

@Santix1234 Santix1234 changed the title [WIP] Implement Lightweight Performance Metrics Collection for ALP Implement Lightweight Performance Metrics Collection for ALP Learning Cycles Jul 5, 2025
@Santix1234 Santix1234 marked this pull request as ready for review July 5, 2025 11:24
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants