Skip to content

Ein End-to-End-Projekt zur Analyse und Vorhersage von Zeitreihen mit Python. Enthält Datenvorbereitung, Modellierung, Vorhersage und Evaluierung. Nutzung von Docker für eine konsistente Entwicklungsumgebung und Jupyter Notebooks zur Visualisierung.

Notifications You must be signed in to change notification settings

Sangeeths11/TimeSeriesForecasting

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TimeSeriesForecasting

Übersicht

TimeSeriesForecasting is an end-to-end project for analyzing and forecasting time series data using Python. The project utilizes Jupyter Notebooks for data analysis, Python scripts for data processing and modeling, and Docker to provide a consistent development environment.

Projektstruktur

TimeSeriesForecasting/
├── data/
├── notebooks/
├──── DeepLearningApproaches/
├──── GenerativeAIApproaches/
├──── MachineLearningApproaches/
├── models/
├── results/
├── requirements.txt
├── .gitignore
└── README.md
  • data/: Contains the raw data.
  • notebooks/: Jupyter Notebooks for data analysis and modeling.
  • scripts/: Python scripts for various tasks.
  • models/: Saved models.
  • results/: Results and reports.
  • requirements.txt: List of required Python packages.
  • .gitignore: Files and directories to be ignored by Git.
  • README.md: Project description and instructions.

Installation

Steps

  1. Clone the repository:

    git clone <repository-url>
    cd TimeSeriesForecasting

Nutzung

  1. Place your raw data in the data/ directory.
  2. Create and edit Jupyter Notebooks in the notebooks/ directory.
  3. Save models in the models/ directory.
  4. Store results and reports in the results/ directory.

Autor

Sangeeths Chandrakumar

About

Ein End-to-End-Projekt zur Analyse und Vorhersage von Zeitreihen mit Python. Enthält Datenvorbereitung, Modellierung, Vorhersage und Evaluierung. Nutzung von Docker für eine konsistente Entwicklungsumgebung und Jupyter Notebooks zur Visualisierung.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published