-
Notifications
You must be signed in to change notification settings - Fork 113
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
initial implementation of kernel_synth
- Loading branch information
Showing
3 changed files
with
284 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
# Copyright (c) 2024, Salesforce, Inc. | ||
# SPDX-License-Identifier: Apache-2 | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,267 @@ | ||
# Copyright (c) 2024, Amazon.com, Inc. or its affiliates and Salesforce, Inc. | ||
# SPDX-License-Identifier: Apache-2 | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import argparse | ||
import functools | ||
import os | ||
from pathlib import Path | ||
from typing import Optional | ||
|
||
import datasets | ||
import numpy as np | ||
from datasets import Features, Sequence, Value | ||
from sklearn.gaussian_process import GaussianProcessRegressor | ||
from sklearn.gaussian_process.kernels import ( | ||
RBF, | ||
ConstantKernel, | ||
DotProduct, | ||
ExpSineSquared, | ||
Kernel, | ||
RationalQuadratic, | ||
WhiteKernel, | ||
) | ||
from torch.utils.data import Dataset | ||
|
||
from uni2ts.common.env import env | ||
from uni2ts.data.builder import DatasetBuilder | ||
from uni2ts.data.dataset import SampleTimeSeriesType, TimeSeriesDataset | ||
from uni2ts.data.indexer import HuggingFaceDatasetIndexer | ||
|
||
LENGTH = 1024 | ||
KERNEL_BANK = [ | ||
ExpSineSquared(periodicity=24 / LENGTH), # H | ||
ExpSineSquared(periodicity=48 / LENGTH), # 0.5H | ||
ExpSineSquared(periodicity=96 / LENGTH), # 0.25H | ||
ExpSineSquared(periodicity=24 * 7 / LENGTH), # H | ||
ExpSineSquared(periodicity=48 * 7 / LENGTH), # 0.5H | ||
ExpSineSquared(periodicity=96 * 7 / LENGTH), # 0.25H | ||
ExpSineSquared(periodicity=7 / LENGTH), # D | ||
ExpSineSquared(periodicity=14 / LENGTH), # 0.5D | ||
ExpSineSquared(periodicity=30 / LENGTH), # D | ||
ExpSineSquared(periodicity=60 / LENGTH), # 0.5D | ||
ExpSineSquared(periodicity=365 / LENGTH), # D | ||
ExpSineSquared(periodicity=365 * 2 / LENGTH), # 0.5D | ||
ExpSineSquared(periodicity=4 / LENGTH), # W | ||
ExpSineSquared(periodicity=26 / LENGTH), # W | ||
ExpSineSquared(periodicity=52 / LENGTH), # W | ||
ExpSineSquared(periodicity=4 / LENGTH), # M | ||
ExpSineSquared(periodicity=6 / LENGTH), # M | ||
ExpSineSquared(periodicity=12 / LENGTH), # M | ||
ExpSineSquared(periodicity=4 / LENGTH), # Q | ||
ExpSineSquared(periodicity=4 * 10 / LENGTH), # Q | ||
ExpSineSquared(periodicity=10 / LENGTH), # Y | ||
DotProduct(sigma_0=0.0), | ||
DotProduct(sigma_0=1.0), | ||
DotProduct(sigma_0=10.0), | ||
RBF(length_scale=0.1), | ||
RBF(length_scale=1.0), | ||
RBF(length_scale=10.0), | ||
RationalQuadratic(alpha=0.1), | ||
RationalQuadratic(alpha=1.0), | ||
RationalQuadratic(alpha=10.0), | ||
WhiteKernel(noise_level=0.1), | ||
WhiteKernel(noise_level=1.0), | ||
ConstantKernel(), | ||
] | ||
|
||
|
||
def random_binary_map(a: Kernel, b: Kernel): | ||
""" | ||
Applies a random binary operator (+ or *) with equal probability | ||
on kernels ``a`` and ``b``. | ||
Parameters | ||
---------- | ||
a | ||
A GP kernel. | ||
b | ||
A GP kernel. | ||
Returns | ||
------- | ||
The composite kernel `a + b` or `a * b`. | ||
""" | ||
binary_maps = [lambda x, y: x + y, lambda x, y: x * y] | ||
return np.random.choice(binary_maps)(a, b) | ||
|
||
|
||
def sample_from_gp_prior( | ||
kernel: Kernel, X: np.ndarray, random_seed: Optional[int] = None | ||
): | ||
""" | ||
Draw a sample from a GP prior. | ||
Parameters | ||
---------- | ||
kernel | ||
The GP covaraince kernel. | ||
X | ||
The input "time" points. | ||
random_seed, optional | ||
The random seed for sampling, by default None. | ||
Returns | ||
------- | ||
A time series sampled from the GP prior. | ||
""" | ||
if X.ndim == 1: | ||
X = X[:, None] | ||
|
||
assert X.ndim == 2 | ||
gpr = GaussianProcessRegressor(kernel=kernel) | ||
ts = gpr.sample_y(X, n_samples=1, random_state=random_seed) | ||
|
||
return ts | ||
|
||
|
||
def sample_from_gp_prior_efficient( | ||
kernel: Kernel, | ||
X: np.ndarray, | ||
random_seed: Optional[int] = None, | ||
method: str = "eigh", | ||
): | ||
""" | ||
Draw a sample from a GP prior. An efficient version that allows specification | ||
of the sampling method. The default sampling method used in GaussianProcessRegressor | ||
is based on SVD which is significantly slower that alternatives such as `eigh` and | ||
`cholesky`. | ||
Parameters | ||
---------- | ||
kernel | ||
The GP covaraince kernel. | ||
X | ||
The input "time" points. | ||
random_seed, optional | ||
The random seed for sampling, by default None. | ||
method, optional | ||
The sampling method for multivariate_normal, by default `eigh`. | ||
Returns | ||
------- | ||
A time series sampled from the GP prior. | ||
""" | ||
if X.ndim == 1: | ||
X = X[:, None] | ||
|
||
assert X.ndim == 2 | ||
|
||
cov = kernel(X) | ||
ts = np.random.default_rng(seed=random_seed).multivariate_normal( | ||
mean=np.zeros(X.shape[0]), cov=cov, method=method | ||
) | ||
|
||
return ts | ||
|
||
|
||
def generate_time_series(max_kernels: int = 5): | ||
"""Generate a synthetic time series from KernelSynth. | ||
Parameters | ||
---------- | ||
max_kernels, optional | ||
The maximum number of base kernels to use for each time series, by default 5 | ||
Returns | ||
------- | ||
A time series generated by KernelSynth. | ||
""" | ||
while True: | ||
X = np.linspace(0, 1, LENGTH) | ||
|
||
# Randomly select upto max_kernels kernels from the KERNEL_BANK | ||
selected_kernels = np.random.choice( | ||
KERNEL_BANK, np.random.randint(1, max_kernels + 1), replace=True | ||
) | ||
|
||
# Combine the sampled kernels using random binary operators | ||
kernel = functools.reduce(random_binary_map, selected_kernels) | ||
|
||
# Sample a time series from the GP prior | ||
try: | ||
ts = sample_from_gp_prior(kernel=kernel, X=X) | ||
except np.linalg.LinAlgError as err: | ||
print("Error caught:", err) | ||
continue | ||
|
||
# The timestamp is arbitrary | ||
return {"start": np.datetime64("2000-01-01 00:00", "s"), "target": ts.squeeze()} | ||
|
||
|
||
class KernelSynthDatasetBuilder(DatasetBuilder): | ||
def __init__( | ||
self, | ||
freq: str, | ||
weight: float = 1.0, | ||
storage_path: Path = env.CUSTOM_DATA_PATH, | ||
): | ||
self.freq = freq | ||
self.weight = weight | ||
self.storage_path = Path(storage_path) | ||
self.dataset_name = f"kernel_synth_{self.freq}" | ||
|
||
def build_dataset( | ||
self, num_series: int, max_kernels: int, num_proc: int = os.cpu_count() | ||
): | ||
def example_gen_func(shards: list[tuple[int, int]]): | ||
for start, end in shards: | ||
for idx in range(start, end): | ||
time_series = generate_time_series(max_kernels) | ||
yield time_series | dict(item_id=f"item_{idx}", freq=self.freq) | ||
|
||
features = Features( | ||
dict( | ||
item_id=Value("string"), | ||
start=Value("timestamp[s]"), | ||
freq=Value("string"), | ||
target=Sequence(Value("float32")), | ||
) | ||
) | ||
shards = [ | ||
(idx * num_series // num_proc, (idx + 1) * num_series // num_proc) | ||
for idx in range(num_proc) | ||
] | ||
hf_dataset = datasets.Dataset.from_generator( | ||
example_gen_func, | ||
features=features, | ||
gen_kwargs={"shards": shards}, | ||
num_proc=num_proc, | ||
cache_dir=env.HF_CACHE_PATH, | ||
) | ||
hf_dataset.info.dataset_name = self.dataset_name | ||
hf_dataset.save_to_disk(self.storage_path / self.dataset_name) | ||
|
||
def load_dataset(self, transform_map: dict) -> Dataset: | ||
return TimeSeriesDataset( | ||
HuggingFaceDatasetIndexer( | ||
datasets.load_from_disk(str(self.storage_path / self.dataset_name)) | ||
), | ||
transform=transform_map[self.dataset_name](), | ||
dataset_weight=self.weight, | ||
sample_time_series=SampleTimeSeriesType.PROPORTIONAL, | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("-F", "--freq", type=str, default="H") | ||
parser.add_argument("-N", "--num-series", type=int, default=1000_000) | ||
parser.add_argument("-J", "--max-kernels", type=int, default=5) | ||
args = parser.parse_args() | ||
|
||
KernelSynthDatasetBuilder(freq=args.freq).build_dataset( | ||
num_series=args.num_series, | ||
max_kernels=args.max_kernels, | ||
) |