Skip to content

SafalNarsingh/Prodigy_ML_01

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

18 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🏠 House Prices Prediction - Advanced Regression Techniques

Prodigy Infotech Machine Learning Task 1

Problem Statement

Implement a linear regression model to predict the prices of houses based on their square footage and the number of bedrooms and bathrooms.

πŸ“Š Dataset

This project uses the House Prices - Advanced Regression Techniques dataset from Kaggle:

House Prices Competition Link

πŸš€ How to Run

  1. Clone the repository:
git clone https://github.com/SafalNarsingh/Prodigy_ML_01
  1. Install dependencies:
  pip install numpy pandas matplotlib seaborn scikit-learn 
  1. Launch jupyternotebook:
jupyter notebook house_prices.ipynb

πŸ“ File Structure

.
β”œβ”€β”€ data_files/
β”‚   β”œβ”€β”€ sample_submission.csv
β”‚   β”œβ”€β”€ test.csv
β”‚   └── train.csv
β”œβ”€β”€ data_description.txt
β”œβ”€β”€ house_prices.ipynb
└── readme.md

πŸ“¦ Requirements

Make sure the following Python libraries are installed:

  • numpy

  • pandas

  • matplotlib

  • seaborn

  • scikit-learn

About

A linear regression model for a kaggle dataset

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published