Skip to content

Prometheus-Swarm/kno-sdk

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

75 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

kno-sdk

A Python library for cloning, indexing, and semantically searching Git repositories using embeddings (OpenAI or SBERT) and Chroma — plus a high-level agent_query for autonomous code agent.


🚀 Features

  • Clone or update any Git repository with a single call
  • Extract semantic code chunks via Tree-Sitter grammars (functions, classes, methods, etc.)
  • Fallback to line-based chunking for unsupported languages or large files
  • Embed code or text with your choice of:
    • OpenAI's text-embedding-ada-002 via OpenAIEmbeddings
    • Local SBERT model (e.g. microsoft/graphcodebert-base) via SBERTEmbeddings
  • Persist vector store in a .kno/ folder using Chroma
  • Auto-commit & push the embedding database back to your repo
  • Fast similarity search over indexed code chunks
  • Autonomous agent for code analysis via agent_query()

📦 Installation

pip install kno-sdk

🏁 Quickstart

from kno_sdk import clone_and_index, search, EmbeddingMethod

# 1. Clone (or pull) and index a repository
repo_index = clone_and_index(
    repo_url="https://github.com/SyedGhazanferAnwar/NestJs-MovieApp",
    branch="master",
    embedding=EmbeddingMethod.SBERT,      # or EmbeddingMethod.OPENAI
    cloned_repo_base_dir="repos"                      # where to clone locally
)
print("Indexed at:", repo_index.path)
print("Directory snapshot:\n", repo_index.digest)

# 2. Perform semantic search
results = search(
    repo_url="https://github.com/SyedGhazanferAnwar/NestJs-MovieApp",
    branch="master",
    embedding=EmbeddingMethod.SBERT,
    cloned_repo_base_dir="repos",
    query="NestFactory",
    k=5
)
for i, chunk in enumerate(results, 1):
    print(f"--- Result #{i} ---\n{chunk}\n")

# 3. Autonomous Code-Analysis Agent
from kno_sdk import agent_query, EmbeddingMethod, LLMProvider

# First create a repo index
repo_index = clone_and_index(
    repo_url="https://github.com/WebGoat/WebGoat",
    branch="main",
    embedding=EmbeddingMethod.SBERT,
    cloned_repo_base_dir="repos"
)

# Then use the index with agent_query
result = agent_query(
    repo_index=repo_index,
    llm_provider=LLMProvider.ANTHROPIC,
    llm_model="claude-3-haiku-20240307",
    llm_temperature=0.0,
    llm_max_tokens=4096,
    llm_system_prompt="You are a senior code-analysis agent.",
    prompt="Find issues, bugs and vulnerabilities in this repo, and explain each with exact code locations.",
    MODEL_API_KEY="your_api_key_here"
)

print(result)

📖 API Reference

clone_and_index(...) → RepoIndex

Clone (or pull) a repository, embed its files, and persist a Chroma database in .kno folder. Finally, commit & push the .kno/ folder back to the original repo.

def clone_and_index(
    repo_url: str,
    branch: str = "main",
    embedding: EmbeddingMethod = EmbeddingMethod.SBERT,
    cloned_repo_base_dir: str = "."
) -> RepoIndex
  • repo_url — Git HTTPS/SSH URL

  • branch — branch to clone or update (default: main)

  • embedding — EmbeddingMethod.OPENAI or EmbeddingMethod.SBERT

  • base_dir — local directory to clone into (default: current working dir)

Returns a RepoIndex object with:

  • path: pathlib.Path — local clone directory

  • digest: str — textual snapshot of the directory tree

  • vector_store: Chroma — the Chroma collection instance

search(...) → List[str]

Run a similarity search on an existing .kno/ Chroma database.

def search(
    repo_url: str,
    branch: str = "main",
    embedding: EmbeddingMethod = EmbeddingMethod.SBERT,
    query: str = "",
    k: int = 8,
    cloned_repo_base_dir: str = "."
) -> List[str]
  • query — your natural-language or code search prompt

  • k — number of top results to return

Returns a list of the top-k matching code/text chunks.

agent_query(...) → str

High-level agent that clones, indexes, and then iteratively uses tools (search_code, read_file, etc.) plus an LLM to fulfill your prompt.

def agent_query(
    repo_url: str,
    branch: str = "main",
    embedding: EmbeddingMethod = EmbeddingMethod.SBERT,
    cloned_repo_base_dir: str = str(Path.cwd()),
    llm_provider: LLMProvider = LLMProvider.ANTHROPIC,
    llm_model: str = "claude-3-haiku-20240307",
    llm_temperature: float = 0.0,
    llm_max_tokens: int = 4096,
    llm_system_prompt: str = "",
    prompt: str = "",
    MODEL_API_KEY: str = "",
) -> str
  • repo_url, branch, embedding, base_dir — same as above

  • llm_provider — LLMProvider.OPENAI or LLMProvider.ANTHROPIC

  • llm_model — model name (e.g. "gpt-4" or "claude-3-haiku-20240307")

  • llm_temperature, llm_max_tokens — sampling params

  • llm_system_prompt — initial system message for the agent

  • prompt — your user query/task description

  • MODEL_API_KEY — sets OPENAI_API_KEY or ANTHROPIC_API_KEY

Returns the agent's Final Answer as a string.

EmbeddingMethod

class EmbeddingMethod(str, Enum):
    OPENAI = "OpenAIEmbeddings"
    SBERT  = "SBERTEmbeddings"

Choose between OpenAI's hosted embeddings or a local SBERT model.

🔍 How It Works

  1. Clone or PullUses GitPython to clone depth-1 or pull the latest changes.

  2. Directory SnapshotBuilds a small "digest" of files/folders (up to ~1 K tokens).

  3. Chunk Extraction

    • Tree-sitter for language-aware extraction of functions, classes, etc.

    • Fallback to fixed-size line chunks for unknown languages or large files.

  4. Embedding

    • Streams each chunk into your chosen embedding backend.

    • Respects a 16 000-token cap per chunk.

  5. Vector Store

    • Persists embeddings in a namespaced Chroma collection under .kno/.

    • Only indexes files once (skips already-populated collections).

  6. Commit & Push

    • Automatically stages, commits, and pushes .kno/ back to your remote.
  7. Autonomous Agent

  • RAG prompt

  • Tool calls (search_code, read_file, …)

  • Iterative LLM planning & execution

  • Stops on "Final Answer:" or max iterations

⚙️ Configuration

  • Skip directories: .git, node_modules, build, dist, target, .vscode, .kno

  • Skip files: package-lock.json, yarn.lock, .prettierignore

  • Binary extensions: common image, audio, video, archive, font, and binary file types

All of the above can be modified by forking the source and adjusting the skip_dirs, skip_files, and BINARY_EXTS sets.

🔧 Dependencies

🤝 Contributing

  1. Fork this repo

  2. Create your feature branch (git checkout -b feature/AmazingFeature)

  3. Commit your changes (git commit -m 'Add amazing feature')

  4. Push to the branch (git push origin feature/AmazingFeature)

  5. Open a Pull Request

Please run pytest before submitting and follow the existing code style.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages