Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
The table of contents is too big for display.
Diff view
Diff view
  •  
  •  
  •  
The diff you're trying to view is too large. We only load the first 3000 changed files.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -0,0 +1,172 @@
1: { ⊢ (p103 V98), (p26 c34 V94), (p103 V0), (p102 V0)} : Axiom()[]
2: { ⊢ (p26 c34 V94), (p103 V0), (p102 V0)} : Contraction(1)[]
3: {(p26 V95 V96), (p26 c34 c5) ⊢ } : Axiom()[]
4: {(p26 c34 c5) ⊢ } : Contraction(3)[]
5: { ⊢ (p103 V0), (p102 V0)} : UnifyingResolution(2, 4)[]
6: {(p103 V0) ⊢ (p104 V0 V93 V97), (p26 V97 V93)} : Axiom()[]
7: {(p104 V0 V93 c34) ⊢ } : Axiom()[]
8: {(p103 V0) ⊢ (p26 c34 V93)} : UnifyingResolution(6, 7)[]
9: {(p103 V0) ⊢ } : UnifyingResolution(8, 4)[]
10: { ⊢ (p102 V0)} : UnifyingResolution(5, 9)[]
11: { ⊢ (p17 (f6 c32 c16 c18))} : Axiom()[]
12: {(p17 (f6 V101 V102 V103)) ⊢ (p106 V0), (p105 V0)} : Axiom()[]
13: { ⊢ (p106 V0), (p105 V0)} : UnifyingResolution(11, 12)[]
14: {(p17 (f6 c32 V99 V100)), (p106 V0) ⊢ } : Axiom()[]
15: {(p106 V0) ⊢ } : UnifyingResolution(11, 14)[]
16: { ⊢ (p105 V0)} : UnifyingResolution(13, 15)[]
17: {(p105 V0) ⊢ (p107 V0 V0), (p101 V0)} : Axiom()[]
18: {(p107 V0 V0), (p102 V0) ⊢ } : Axiom()[]
19: {(p105 V0), (p102 V0) ⊢ (p101 V0)} : UnifyingResolution(17, 18)[]
20: {(p102 V0) ⊢ (p101 V0)} : UnifyingResolution(16, 19)[]
21: { ⊢ (p101 V0)} : UnifyingResolution(10, 20)[]
22: { ⊢ (p39 c36)} : Axiom()[]
23: {(p39 V112) ⊢ (p111 V108 c35 V108), (p109 V108)} : Axiom()[]
24: { ⊢ (p111 V108 c35 V108), (p109 V108)} : UnifyingResolution(22, 23)[]
25: {(p39 V111), (p111 V108 V110 V108) ⊢ (p34 (f12 V108 V110 c19) c28)} : Axiom()[]
26: {(p111 V108 V110 V108) ⊢ (p34 (f12 V108 V110 c19) c28)} : UnifyingResolution(22, 25)[]
27: { ⊢ (p109 V108), (p34 (f12 V108 c35 c19) c28)} : UnifyingResolution(24, 26)[]
28: {(p109 V109) ⊢ (p110 V109)} : Axiom()[]
29: {(p110 c39) ⊢ } : Axiom()[]
30: {(p109 c39) ⊢ } : UnifyingResolution(28, 29)[]
31: { ⊢ (p34 (f12 c39 c35 c19) c28)} : UnifyingResolution(27, 30)[]
32: { ⊢ (p113 c11 c8)} : Axiom()[]
33: {(p113 V122 V121) ⊢ (p71 V121 V122 c1 c17)} : Axiom()[]
34: { ⊢ (p71 c8 c11 c1 c17)} : UnifyingResolution(32, 33)[]
35: { ⊢ (p114 V115 V114)} : Axiom()[]
36: {(p114 V115 V114), (p71 V114 V115 V116 V117) ⊢ (p112 c39)} : Axiom()[]
37: {(p71 V114 V115 V116 V117) ⊢ (p112 c39)} : UnifyingResolution(35, 36)[]
38: { ⊢ (p112 c39)} : UnifyingResolution(34, 37)[]
39: {(p34 (f12 V113 V104 c19) c28) ⊢ (p115 V113 V104 V113 V118 c8)} : Axiom()[]
40: {(p115 V113 V104 V113 V118 V123), (p71 V123 V118 V119 V120), (p112 V113) ⊢ (p108 V0)} : Axiom()[]
41: {(p34 (f12 V113 V104 c19) c28), (p71 c8 V118 V119 V120), (p112 V113) ⊢ (p108 V0)} : UnifyingResolution(39, 40)[]
42: {(p34 (f12 V113 V104 c19) c28), (p112 V113) ⊢ (p108 V0)} : UnifyingResolution(34, 41)[]
43: {(p34 (f12 c39 V104 c19) c28) ⊢ (p108 V0)} : UnifyingResolution(38, 42)[]
44: { ⊢ (p108 V0)} : UnifyingResolution(31, 43)[]
45: {(p108 V0) ⊢ (p118 V0 V106 V105), (p100 V0)} : Axiom()[]
46: {(p118 V0 V106 V105), (p34 (f12 V105 V106 c19) V107) ⊢ (p116 V0 V0)} : Axiom()[]
47: {(p108 V0), (p34 (f12 V105 V106 c19) V107) ⊢ (p100 V0), (p116 V0 V0)} : UnifyingResolution(45, 46)[]
48: {(p116 V0 V0) ⊢ (p117 V0 V0)} : Axiom()[]
49: {(p117 V0 V0), (p101 V0) ⊢ } : Axiom()[]
50: {(p116 V0 V0), (p101 V0) ⊢ } : UnifyingResolution(48, 49)[]
51: {(p34 (f12 V105 V106 c19) V107), (p108 V0), (p101 V0) ⊢ (p100 V0)} : UnifyingResolution(47, 50)[]
52: {(p108 V0), (p101 V0) ⊢ (p100 V0)} : UnifyingResolution(31, 51)[]
53: {(p101 V0) ⊢ (p100 V0)} : UnifyingResolution(44, 52)[]
54: { ⊢ (p100 V0)} : UnifyingResolution(21, 53)[]
55: { ⊢ (p70 V138 c7), (p127 V0 V0), (p96 V128 V129), (p124 V0 V0)} : Axiom()[]
56: {(p70 c6 c7) ⊢ } : Axiom()[]
57: { ⊢ (p127 V0 V0), (p96 V128 V129), (p124 V0 V0)} : UnifyingResolution(55, 56)[]
58: {(p127 V0 V0) ⊢ (p70 c6 V137), (p120 V0)} : Axiom()[]
59: {(p127 V0 V0) ⊢ (p120 V0)} : UnifyingResolution(58, 56)[]
60: { ⊢ (p124 V0 V0), (p96 V128 V129), (p120 V0)} : UnifyingResolution(57, 59)[]
61: { ⊢ (p14 c18 c41)} : Axiom()[]
62: {(p14 c18 V132), (p96 V130 c14) ⊢ (p125 V130)} : Axiom()[]
63: {(p96 V130 c14) ⊢ (p125 V130)} : UnifyingResolution(61, 62)[]
64: {(p14 c18 V131), (p125 c9) ⊢ } : Axiom()[]
65: {(p125 c9) ⊢ } : UnifyingResolution(61, 64)[]
66: {(p96 c9 c14) ⊢ } : UnifyingResolution(63, 65)[]
67: { ⊢ (p124 V0 V0), (p120 V0)} : UnifyingResolution(60, 66)[]
68: { ⊢ (p2 (f4 c26) c24 c12)} : Axiom()[]
69: {(p2 (f4 V133) V134 V135) ⊢ (p126 V0 V0), (p119 V0)} : Axiom()[]
70: { ⊢ (p126 V0 V0), (p119 V0)} : UnifyingResolution(68, 69)[]
71: {(p2 (f4 c26) V136 c12), (p126 V0 V0), (p124 V0 V0) ⊢ (p96 c9 V127)} : Axiom()[]
72: {(p126 V0 V0), (p124 V0 V0) ⊢ (p96 c9 V127)} : UnifyingResolution(68, 71)[]
73: {(p124 V0 V0) ⊢ (p119 V0), (p96 c9 V127)} : UnifyingResolution(70, 72)[]
74: {(p124 V0 V0) ⊢ (p119 V0)} : UnifyingResolution(73, 66)[]
75: { ⊢ (p120 V0), (p119 V0)} : UnifyingResolution(67, 74)[]
76: {(p120 V0) ⊢ (p81 V125 V126), (p123 V0), (p121 V0)} : Axiom()[]
77: {(p81 V1 V71) ⊢ } : Axiom()[]
78: {(p120 V0) ⊢ (p123 V0), (p121 V0)} : UnifyingResolution(76, 77)[]
79: {(p123 V0) ⊢ (p81 V1 V124)} : Axiom()[]
80: {(p123 V0) ⊢ } : UnifyingResolution(79, 77)[]
81: {(p120 V0) ⊢ (p121 V0)} : UnifyingResolution(78, 80)[]
82: {(p121 V0) ⊢ (p122 V0)} : Axiom()[]
83: {(p122 V0) ⊢ } : Axiom()[]
84: {(p121 V0) ⊢ } : UnifyingResolution(82, 83)[]
85: {(p120 V0) ⊢ } : UnifyingResolution(81, 84)[]
86: { ⊢ (p119 V0)} : UnifyingResolution(75, 85)[]
87: { ⊢ (p135 V0 V0), (p128 V0 V0)} : Axiom()[]
88: {(p135 V0 V0), (p119 V0) ⊢ (p133 V0 V0)} : Axiom()[]
89: {(p119 V0) ⊢ (p128 V0 V0), (p133 V0 V0)} : UnifyingResolution(87, 88)[]
90: {(p133 V0 V0) ⊢ (p134 V0), (p99 V0)} : Axiom()[]
91: {(p134 V0) ⊢ } : Axiom()[]
92: {(p133 V0 V0) ⊢ (p99 V0)} : UnifyingResolution(90, 91)[]
93: {(p119 V0) ⊢ (p128 V0 V0), (p99 V0)} : UnifyingResolution(89, 92)[]
94: { ⊢ (p130 c10 c4)} : Axiom()[]
95: {(p130 V146 V147) ⊢ (p51 V146 (f9 V147) c14 c22 c23)} : Axiom()[]
96: { ⊢ (p51 c10 (f9 c4) c14 c22 c23)} : UnifyingResolution(94, 95)[]
97: {(p51 V139 (f9 V140) c14 c22 V141) ⊢ (p131 V0 V139), (p129 V0 V0)} : Axiom()[]
98: {(p131 V0 V139), (p100 V0) ⊢ } : Axiom()[]
99: {(p51 V139 (f9 V140) c14 c22 V141), (p100 V0) ⊢ (p129 V0 V0)} : UnifyingResolution(97, 98)[]
100: {(p100 V0) ⊢ (p129 V0 V0)} : UnifyingResolution(96, 99)[]
101: {(p128 V0 V0) ⊢ (p132 V0 V0 V142)} : Axiom()[]
102: {(p132 V0 V0 V142), (p51 V142 (f9 V143) V144 V145 c23), (p129 V0 V0) ⊢ } : Axiom()[]
103: {(p128 V0 V0), (p51 V142 (f9 V143) V144 V145 c23), (p129 V0 V0) ⊢ } : UnifyingResolution(101, 102)[]
104: {(p128 V0 V0), (p129 V0 V0) ⊢ } : UnifyingResolution(96, 103)[]
105: {(p100 V0), (p128 V0 V0) ⊢ } : UnifyingResolution(100, 104)[]
106: {(p119 V0), (p100 V0) ⊢ (p99 V0)} : UnifyingResolution(93, 105)[]
107: {(p100 V0) ⊢ (p99 V0)} : UnifyingResolution(86, 106)[]
108: { ⊢ (p99 V0)} : UnifyingResolution(54, 107)[]
109: { ⊢ (p151 V0 V148 V0 V148), (p149 V0 V148 V0 V148)} : Axiom()[]
110: {(p151 V0 V148 V0 V148) ⊢ (p148 V0 V148 V0)} : Axiom()[]
111: { ⊢ (p149 V0 V148 V0 V148), (p148 V0 V148 V0)} : UnifyingResolution(109, 110)[]
112: {(p149 V0 V148 V0 V148) ⊢ (p150 V0 V148), (p12 V148 V0)} : Axiom()[]
113: {(p150 V0 V148) ⊢ } : Axiom()[]
114: {(p149 V0 V148 V0 V148) ⊢ (p12 V148 V0)} : UnifyingResolution(112, 113)[]
115: { ⊢ (p148 V0 V148 V0), (p12 V148 V0)} : UnifyingResolution(111, 114)[]
116: {(p148 V0 V148 V0) ⊢ (p152 V0 V148 V0 V148), (p12 V156 V157), (p12 V154 V155)} : Axiom()[]
117: {(p152 V0 V148 V0 V148), (p99 V0) ⊢ (p136 V0 V148)} : Axiom()[]
118: {(p148 V0 V148 V0), (p99 V0) ⊢ (p12 V154 V155), (p12 V156 V157), (p136 V0 V148)} : UnifyingResolution(116, 117)[]
119: {(p148 V0 V148 V0), (p99 V0) ⊢ (p12 V154 V155), (p136 V0 V148)} : Contraction(118)[]
120: {(p99 V0) ⊢ (p12 V148 V0), (p12 V154 V155), (p136 V0 V148)} : UnifyingResolution(115, 119)[]
121: {(p99 V0) ⊢ (p136 V0 V148), (p12 V148 V0)} : Contraction(120)[]
122: { ⊢ (p140 V150 V151 V0 V153 V150), (p138 V0 V153 V150 V151)} : Axiom()[]
123: {(p140 V150 V151 V0 c0 V150) ⊢ (p137 V150 V151)} : Axiom()[]
124: { ⊢ (p138 V0 c0 V150 V151), (p137 V150 V151)} : UnifyingResolution(122, 123)[]
125: {(p138 V0 V152 V150 V151) ⊢ (p139 V0 V152 V150), (p137 V0 V152)} : Axiom()[]
126: {(p139 V0 V152 V150) ⊢ } : Axiom()[]
127: {(p138 V0 V152 V150 V151) ⊢ (p137 V0 V152)} : UnifyingResolution(125, 126)[]
128: { ⊢ (p137 V150 V151), (p137 V0 c0)} : UnifyingResolution(124, 127)[]
129: { ⊢ (p137 V0 c0)} : Contraction(128)[]
130: {(p136 V0 V149) ⊢ (p144 V0 V149 V0 V149), (p142 V0 V149)} : Axiom()[]
131: {(p144 V0 V149 V0 V149) ⊢ (p141 V0 V149 V0 V149)} : Axiom()[]
132: {(p136 V0 V149) ⊢ (p142 V0 V149), (p141 V0 V149 V0 V149)} : UnifyingResolution(130, 131)[]
133: { ⊢ (p143 V0 V149)} : Axiom()[]
134: {(p143 V0 V149), (p142 V0 V149) ⊢ } : Axiom()[]
135: {(p142 V0 V149) ⊢ } : UnifyingResolution(133, 134)[]
136: {(p136 V0 V149) ⊢ (p141 V0 V149 V0 V149)} : UnifyingResolution(132, 135)[]
137: { ⊢ (p147 V0 V149)} : Axiom()[]
138: {(p147 V0 V149), (p141 V0 V149 V0 V149) ⊢ (p145 V0 V149 V0 V149)} : Axiom()[]
139: {(p141 V0 V149 V0 V149) ⊢ (p145 V0 V149 V0 V149)} : UnifyingResolution(137, 138)[]
140: {(p137 V0 V149) ⊢ (p146 V0 V149 V0 V149)} : Axiom()[]
141: {(p146 V0 V149 V0 V149), (p145 V0 V149 V0 V149) ⊢ } : Axiom()[]
142: {(p137 V0 V149), (p145 V0 V149 V0 V149) ⊢ } : UnifyingResolution(140, 141)[]
143: {(p141 V0 V149 V0 V149), (p137 V0 V149) ⊢ } : UnifyingResolution(139, 142)[]
144: {(p136 V0 V149), (p137 V0 V149) ⊢ } : UnifyingResolution(136, 143)[]
145: {(p136 V0 c0) ⊢ } : UnifyingResolution(129, 144)[]
146: {(p99 V0) ⊢ (p12 c0 V0)} : UnifyingResolution(121, 145)[]
147: { ⊢ (p12 c0 V0)} : UnifyingResolution(108, 146)[]
148: { ⊢ (p39 c25)} : Axiom()[]
149: {(p39 V40) ⊢ (p8 V40 V40)} : Axiom()[]
150: { ⊢ (p8 c25 c25)} : UnifyingResolution(148, 149)[]
151: {(p12 V32 V33) ⊢ (p41 V33 V32 V33 V39), (p34 V32 V33)} : Axiom()[]
152: {(p41 V33 V32 V33 V39), (p8 V39 V39) ⊢ (p38 V33 V32)} : Axiom()[]
153: {(p12 V32 V33), (p8 V39 V39) ⊢ (p34 V32 V33), (p38 V33 V32)} : UnifyingResolution(151, 152)[]
154: {(p12 V32 V33) ⊢ (p34 V32 V33), (p38 V33 V32)} : UnifyingResolution(150, 153)[]
155: { ⊢ (p6 c21)} : Axiom()[]
156: {(p6 V41), (p8 V38 V38) ⊢ (p40 V32 V33 V38)} : Axiom()[]
157: {(p8 V38 V38) ⊢ (p40 V32 V33 V38)} : UnifyingResolution(155, 156)[]
158: {(p6 c21), (p40 V32 V33 V38), (p38 V33 V32) ⊢ } : Axiom()[]
159: {(p40 V32 V33 V38), (p38 V33 V32) ⊢ } : UnifyingResolution(155, 158)[]
160: {(p8 V38 V38), (p38 V33 V32) ⊢ } : UnifyingResolution(157, 159)[]
161: {(p38 V33 V32) ⊢ } : UnifyingResolution(150, 160)[]
162: {(p12 V32 V33) ⊢ (p34 V32 V33)} : UnifyingResolution(154, 161)[]
163: { ⊢ (p36 c0 c30)} : Axiom()[]
164: {(p36 V36 V37) ⊢ (p35 V36 V37)} : Axiom()[]
165: { ⊢ (p35 c0 c30)} : UnifyingResolution(163, 164)[]
166: {(p35 V34 V35) ⊢ (p37 V35 V34 V35 V34)} : Axiom()[]
167: {(p37 V35 V34 V35 V34), (p34 V34 V35) ⊢ } : Axiom()[]
168: {(p35 V34 V35), (p34 V34 V35) ⊢ } : UnifyingResolution(166, 167)[]
169: {(p34 c0 c30) ⊢ } : UnifyingResolution(165, 168)[]
170: {(p12 c0 c30) ⊢ } : UnifyingResolution(162, 169)[]
171: { ⊢ } : UnifyingResolution(147, 170)[]

Loading