Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add bcn model #339

Open
wants to merge 2 commits into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
@@ -1,14 +1,15 @@
repos:
- repo: local
hooks:
- id: yapf
name: yapf
entry: yapf
entry: bash -c 'yapf "$@"; git add -u' --
language: system
args: [-i, --style .style.yapf]
files: \.py$

- repo: https://github.com/pre-commit/pre-commit-hooks
sha: a11d9314b22d8f8c7556443875b731ef05965464
rev: a11d9314b22d8f8c7556443875b731ef05965464
hooks:
- id: check-merge-conflict
- id: check-symlinks
Expand Down
75 changes: 75 additions & 0 deletions configs/segmentation/bcn/bgm/50salads/full/split1.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
MODEL: #MODEL field
framework: "BcnBgm"
backbone:
name: "BcnBgm"
dataset: "50salads"
use_full: True
loss:
name: "BcnBgmLoss"
head:
name: "BcnBgmHead"
dataset: "50salads"
use_full: True
test_mode: "more"
results_path: "./output/BCN/50salads/split1/BcnBgmFull/results"

DATASET: #DATASET field
batch_size: 1
valid_batch_size: 1
test_batch_size: 1
num_workers: 4
train:
format: 'BcnBgmDataset'
file_path: "./data/50salads/splits/train.split1.bundle"
use_full: True
bd_ratio: 0.05
valid:
format: 'BcnBgmDataset'
file_path: "./data/50salads/splits/test.split1.bundle"
use_full: True
bd_ratio: 0.05
test:
format: 'BcnBgmDataset'
file_path: "./data/50salads/splits/test.split1.bundle"
use_full: True
bd_ratio: 0.05

PIPELINE: #PIPELINE field
train:
decode:
name: "GetBcnBgmTrainLabel"

valid:
decode:
name: "GetBcnBgmTrainLabel"

test:
decode:
name: "GetBcnBgmTrainLabel"

OPTIMIZER: #OPTIMIZER field
name: 'Adam'
learning_rate:
name: 'CustomMultiStepDecay'
learning_rate: 0.001
milestones: [100, 200]
gamma: 0.3
weight_decay:
name: 'L2'
value: 0.0001

METRIC: #METRIC field
name: 'BcnBgmMetric'

INFERENCE:
name: 'BcnBgmFull_Inference_helper'
num_channels: 2048
sample_rate: 2
result_path: './inference/'

output_dir: "./output/BCN/50salads/split1/BcnBgmFull/"
log_interval: 2000
epochs: 300
log_level: "DEBUG"
save_interval: 2000
model_name: "BcnBgmFull"
75 changes: 75 additions & 0 deletions configs/segmentation/bcn/bgm/50salads/full/split2.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
MODEL: #MODEL field
framework: "BcnBgm"
backbone:
name: "BcnBgm"
dataset: "50salads"
use_full: True
loss:
name: "BcnBgmLoss"
head:
name: "BcnBgmHead"
dataset: "50salads"
use_full: True
test_mode: "more"
results_path: "./output/BCN/50salads/split2/BcnBgmFull/results"

DATASET: #DATASET field
batch_size: 1
valid_batch_size: 1
test_batch_size: 1
num_workers: 4
train:
format: 'BcnBgmDataset'
file_path: "./data/50salads/splits/train.split2.bundle"
use_full: True
bd_ratio: 0.05
valid:
format: 'BcnBgmDataset'
file_path: "./data/50salads/splits/test.split2.bundle"
use_full: True
bd_ratio: 0.05
test:
format: 'BcnBgmDataset'
file_path: "./data/50salads/splits/test.split2.bundle"
use_full: True
bd_ratio: 0.05

PIPELINE: #PIPELINE field
train:
decode:
name: "GetBcnBgmTrainLabel"

valid:
decode:
name: "GetBcnBgmTrainLabel"

test:
decode:
name: "GetBcnBgmTrainLabel"

OPTIMIZER: #OPTIMIZER field
name: 'Adam'
learning_rate:
name: 'CustomMultiStepDecay'
learning_rate: 0.001
milestones: [100, 200]
gamma: 0.3
weight_decay:
name: 'L2'
value: 0.0001

METRIC: #METRIC field
name: 'BcnBgmMetric'

INFERENCE:
name: 'BcnBgmFull_Inference_helper'
num_channels: 2048
sample_rate: 2
result_path: './inference/'

output_dir: "./output/BCN/50salads/split2/BcnBgmFull/"
log_interval: 2000
epochs: 300
log_level: "DEBUG"
save_interval: 2000
model_name: "BcnBgmFull"
75 changes: 75 additions & 0 deletions configs/segmentation/bcn/bgm/50salads/full/split3.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
MODEL: #MODEL field
framework: "BcnBgm"
backbone:
name: "BcnBgm"
dataset: "50salads"
use_full: True
loss:
name: "BcnBgmLoss"
head:
name: "BcnBgmHead"
dataset: "50salads"
use_full: True
test_mode: "more"
results_path: "./output/BCN/50salads/split3/BcnBgmFull/results"

DATASET: #DATASET field
batch_size: 1
valid_batch_size: 1
test_batch_size: 1
num_workers: 4
train:
format: 'BcnBgmDataset'
file_path: "./data/50salads/splits/train.split3.bundle"
use_full: True
bd_ratio: 0.05
valid:
format: 'BcnBgmDataset'
file_path: "./data/50salads/splits/test.split3.bundle"
use_full: True
bd_ratio: 0.05
test:
format: 'BcnBgmDataset'
file_path: "./data/50salads/splits/test.split3.bundle"
use_full: True
bd_ratio: 0.05

PIPELINE: #PIPELINE field
train:
decode:
name: "GetBcnBgmTrainLabel"

valid:
decode:
name: "GetBcnBgmTrainLabel"

test:
decode:
name: "GetBcnBgmTrainLabel"

OPTIMIZER: #OPTIMIZER field
name: 'Adam'
learning_rate:
name: 'CustomMultiStepDecay'
learning_rate: 0.001
milestones: [100, 200]
gamma: 0.3
weight_decay:
name: 'L2'
value: 0.0001

METRIC: #METRIC field
name: 'BcnBgmMetric'

INFERENCE:
name: 'BcnBgmFull_Inference_helper'
num_channels: 2048
sample_rate: 2
result_path: './inference/'

output_dir: "./output/BCN/50salads/split3/BcnBgmFull/"
log_interval: 2000
epochs: 300
log_level: "DEBUG"
save_interval: 2000
model_name: "BcnBgmFull"
75 changes: 75 additions & 0 deletions configs/segmentation/bcn/bgm/50salads/full/split4.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
MODEL: #MODEL field
framework: "BcnBgm"
backbone:
name: "BcnBgm"
dataset: "50salads"
use_full: True
loss:
name: "BcnBgmLoss"
head:
name: "BcnBgmHead"
dataset: "50salads"
use_full: True
test_mode: "more"
results_path: "./output/BCN/50salads/split4/BcnBgmFull/results"

DATASET: #DATASET field
batch_size: 1
valid_batch_size: 1
test_batch_size: 1
num_workers: 4
train:
format: 'BcnBgmDataset'
file_path: "./data/50salads/splits/train.split4.bundle"
use_full: True
bd_ratio: 0.05
valid:
format: 'BcnBgmDataset'
file_path: "./data/50salads/splits/test.split4.bundle"
use_full: True
bd_ratio: 0.05
test:
format: 'BcnBgmDataset'
file_path: "./data/50salads/splits/test.split4.bundle"
use_full: True
bd_ratio: 0.05

PIPELINE: #PIPELINE field
train:
decode:
name: "GetBcnBgmTrainLabel"

valid:
decode:
name: "GetBcnBgmTrainLabel"

test:
decode:
name: "GetBcnBgmTrainLabel"

OPTIMIZER: #OPTIMIZER field
name: 'Adam'
learning_rate:
name: 'CustomMultiStepDecay'
learning_rate: 0.001
milestones: [100, 200]
gamma: 0.3
weight_decay:
name: 'L2'
value: 0.0001

METRIC: #METRIC field
name: 'BcnBgmMetric'

INFERENCE:
name: 'BcnBgmFull_Inference_helper'
num_channels: 2048
sample_rate: 2
result_path: './inference/'

output_dir: "./output/BCN/50salads/split4/BcnBgmFull/"
log_interval: 2000
epochs: 300
log_level: "DEBUG"
save_interval: 2000
model_name: "BcnBgmFull"
75 changes: 75 additions & 0 deletions configs/segmentation/bcn/bgm/50salads/full/split5.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
MODEL: #MODEL field
framework: "BcnBgm"
backbone:
name: "BcnBgm"
dataset: "50salads"
use_full: True
loss:
name: "BcnBgmLoss"
head:
name: "BcnBgmHead"
dataset: "50salads"
use_full: True
test_mode: "more"
results_path: "./output/BCN/50salads/split5/BcnBgmFull/results"

DATASET: #DATASET field
batch_size: 1
valid_batch_size: 1
test_batch_size: 1
num_workers: 4
train:
format: 'BcnBgmDataset'
file_path: "./data/50salads/splits/train.split5.bundle"
use_full: True
bd_ratio: 0.05
valid:
format: 'BcnBgmDataset'
file_path: "./data/50salads/splits/test.split5.bundle"
use_full: True
bd_ratio: 0.05
test:
format: 'BcnBgmDataset'
file_path: "./data/50salads/splits/test.split5.bundle"
use_full: True
bd_ratio: 0.05

PIPELINE: #PIPELINE field
train:
decode:
name: "GetBcnBgmTrainLabel"

valid:
decode:
name: "GetBcnBgmTrainLabel"

test:
decode:
name: "GetBcnBgmTrainLabel"

OPTIMIZER: #OPTIMIZER field
name: 'Adam'
learning_rate:
name: 'CustomMultiStepDecay'
learning_rate: 0.001
milestones: [100, 200]
gamma: 0.3
weight_decay:
name: 'L2'
value: 0.0001

METRIC: #METRIC field
name: 'BcnBgmMetric'

INFERENCE:
name: 'BcnBgmFull_Inference_helper'
num_channels: 2048
sample_rate: 2
result_path: './inference/'

output_dir: "./output/BCN/50salads/split5/BcnBgmFull/"
log_interval: 2000
epochs: 300
log_level: "DEBUG"
save_interval: 2000
model_name: "BcnBgmFull"
Loading