DSMTA provides the implementation for our manuscript:
Title: Deeply Supervised Multi-Task Autoencoder for Biological Brain Age Estimation Using T1-weighted MRI
Key contributions:
- Deep supervision at multiple decoder depths for stable optimization.
- Multi-task learning, jointly training:
- Brain age prediction
- Sex classification
- Image reconstruction
- Robust training with auxiliary losses.
- Enhanced feature representations via multitasking.
- Ready-to-use scripts and notebooks for data prep, training, and inference.
-
Clone the repository
git clone https://github.com/PLASS-Lab/DSMTA.git cd DSMTA -
Create and activate Conda environment
conda create -n dsmta_env python=3.10 --file requirements.txt conda activate dsmta_env
Request access and download the pretrained weights:
https://drive.google.com/drive/folders/1k8w2HuI10wOUaSyj1qPj57HHGlVUAsVz?usp=sharing
Unzip and place all files under ./weights/.
This study uses the OpenBHB T1-weighted MRI dataset:
-
Download link: https://ieee-dataport.org/open-access/openbhb-multi-site-brain-mri-dataset-age-prediction-and-debiasing
-
Mandatory citation:
Benoit Dufumier, Antoine Grigis, Julie Victor, Corentin Ambroise, Vincent Frouin, Edouard Duchesnay, “OpenBHB: a Large‑Scale Multi‑Site Brain MRI Data‑set for Age Prediction and Debiasing”, NeuroImage, 263:119637, 2022. doi:10.1016/j.neuroimage.2022.119637
To download our processed version of OpenBHB, run:
python test_data_download.py
python train_data_download.pyThis will create the directory structure:
├── data/
│ ├── train/ # Training images + labels
│ └── test/ # Testing images + labels
└── weights/ # Pretrained model files
Launch and run the inference notebook:
jupyter notebook Inference_Notebook.ipynbOpen the training notebooks in the Training_notebooks folder:
jupyter notebook Training_notebooks/If you use this code or models in your research, please cite our paper:
@article{your2025dsmta,
title={Deeply Supervised Multi-Task Autoencoder for Biological Brain Age Estimation Using T1-weighted MRI},
author={...},
journal={Journal Name},
year={2025}
}And when using the OpenBHB dataset, also cite:
@article{dufumier2022openbhb,
title={OpenBHB: a Large-Scale Multi-Site Brain MRI Data-set for Age Prediction and Debiasing},
author={Dufumier, Benoit and Grigis, Antoine and Victor, Julie and Ambroise, Corentin and Frouin, Vincent and Duchesnay, Edouard},
journal={NeuroImage},
volume={263},
pages={119637},
year={2022},
doi={10.1016/j.neuroimage.2022.119637}
}Released under the MIT License. See LICENSE for details.