
A modular and extensible RAG (Retrieval Augmented Generation) package built on PostgreSQL vector database, offering advanced retrieval methods and fusion capabilities.
- Multiple RAG retrieval methods:
- Similarity Search
- Keyword Search
- Graph Retrieval
- KAG (Knowledge-Aware Graph)
- Reciprocal Rank Fusion (RRF) for combining multiple retrieval methods
- Built on PostgreSQL vector database for efficient vector storage and retrieval
- Modular architecture allowing easy integration and customization
- Advanced RAG pipeline creation capabilities
Using pip:
pip install hector_rag
Using Poetry:
poetry add hector_rag
- Python >=3.10,<3.13
- PostgreSQL database
- Dependencies:
- networkx
- semantic-router
- pgvector
- sqlalchemy
import os
from hector_rag import Hector
from hector_rag.retrievers import SimilarityRetriever, KeywordRetriever, GraphRetriever, RRFHybridRetriever
from hector_rag import Hector
from hector_rag.retrievers import GraphRetriever, SemanticRetriever, KeywordRetriever
semantic_retriever = SemanticRetriever(cursor,embeddings,embeddings_dimension=1536,collection_name=collection_name)
semantic_retriever.init_tables()
resp = semantic_retriever.get_relevant_documents(query="What is Fetch Ai ?", document_limit=10)
print(resp)
import os
from hector_rag import Hector
from hector_rag.retrievers import SimilarityRetriever, KeywordRetriever, GraphRetriever, RRFHybridRetriever
from hector_rag import Hector
from hector_rag.retrievers import GraphRetriever, SemanticRetriever, KeywordRetriever
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain_openai import ChatOpenAI
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
llm = ChatOpenAI(model="gpt-3.5-turbo")
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
collection_name = "new_collection_1"
rag = Hector(connection,embeddings, collection_name, {})
# Init all the retrievers that you want to use
semantic_retriever = SemanticRetriever()
graph_retriever = GraphRetriever(llm=llm)
keyword_retriever = KeywordRetriever()
# Add retrievers to Rag pipeline
rag.add_retriever(semantic_retriever)
rag.add_retriever(graph_retriever)
rag.add_retriever(keyword_retriever)
# Fetch documents
docs = rag.get_relevant_documents("What is Decentralized AI ?", document_limit=10)
# Or directly use Hector Invoke to get llm response
while True:
query = str(input("Enter query: "))
response = rag.invoke(llm,query)
print(response)
To set up the development environment:
# Clone the repository
git clone https://github.com/yourusername/hector-rag.git
cd hector-rag
# Install dependencies using Poetry
poetry install
poetry run pytest
For detailed documentation about each retriever type and fusion methods, please visit our documentation page.
Contributions are welcome! Whether it's:
- Adding new retrieval methods
- Improving existing retrievers
- Enhancing documentation
- Reporting bugs
- Suggesting features
Please feel free to submit a Pull Request or create an Issue.
MIT License
For issues and feature requests, please use the GitHub Issues page.
Would you like me to add or modify any specific section of this README?