Skip to content

A distributed deep learning framework that supports flexible parallelization strategies.

Notifications You must be signed in to change notification settings

OuHangKresnik/FlexFlow

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

92 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FlexFlow

A distributed deep learning framework that supports flexible parallelization strategies.

Prerequisties

After you have cloned FlexFlow, use the following command lines to clone Legion and GASNet.

git submodule init
git submodule update

Compilation

  • Download FlexFlow source code:
# Using git to download FlexFlow
git clone --recursive https://gitlab.com/fflow/flexflow
  • Build a DNN model (e.g., alexnet):
./ffcompile.sh examples/alexnet

where examples/alexnet.cc defines all operators in a DNN.

  • To build a distributed version of FlexFlow, add a -d flag:
./ffcompile.sh -d alexnet

Parallelization Strategy

Flexflow accepts any parallelization strategy in layer-wise parallelism (see ) to parallelize training. A parallelization strategy should describe how to parallelize each operator in a DNN. An example parallelization strategy for AlexNet is as follows.

Layer Type Configuration Devices
conv1 conv2d n=4 c=1 h=1 w=1 0 1 2 3
pool1 pool2d n=4 c=1 h=1 w=1 0 1 2 3
conv2 conv2d n=1 c=1 h=2 w=2 0 2 1 3
pool2 pool2d n=1 c=1 h=2 w=2 0 2 1 3
flat1 flat n=2 c=1 0 2
linear1 linear n=1 c=3 0 2 3
linear2 linear n=1 c=3 0 1 2
linear3 linear n=1 c=1 0
Some example parallelization strategies are available in the strategies subfolder.

Training a DNN model

To train a DNN model, run the complied application with the path to the training dataset, the path to the parallelization strategy, and some additional configuration flags. For example:

./alexnet -e 10 -b 256 --lr 0.1 --wd 1e-4 -p 10 -d path_to_dataset -s path_to_strategy -ll:gpu 4 -ll:fsize 90000 -ll:zsize 5000 -ll:cpu 4
  • -e or --epochs: number of total epochs to run (default: 90)
  • -b or --batch-size: global batch size in each iteration (default: 64)
  • --lr or --learning-rate: initial learning rate (default: 0.1)
  • --wd or --weight-decay: weight decay (default: 1e-4)
  • -p or --print-freq: print frequency (default 10)
  • -d or --dataset: path to the training dataset. If not set, synthetic data is used to conduct training.
  • -s or --strategy: path to the strategy to parallelize training. If not set, data parallelism is used as the default strategy.
  • -ll:gpu: number of GPU processors to use on each node
  • -ll:fsize: size of device memory on each GPU (in MB)
  • -ll:zsize: size of zero-copy memory (pinned DRAM with direct GPU access) on each node (in MB). This is used for prefecthing training images from disk.
  • -ll:cpu: number of data loading workers (default: 4)

Publication

Zhihao Jia, Sina Lin, Charles R. Qi, and Alex Aiken. Exploring Hidden Dimensions in Parallelizing Convolutional Neural Networks. In Proceedings of the International Conference on Machine Learning (ICML), Stockholm, Sweden, July 2018.

About

A distributed deep learning framework that supports flexible parallelization strategies.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Cuda 60.0%
  • C++ 39.2%
  • Other 0.8%