Skip to content

Continual Learning with Local Neural Layers

License

Notifications You must be signed in to change notification settings

OneAndZero24/local-cl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Local Continual Learning

logo

Patryk Krukowski, Jan Miksa @ GMUM JU

🚀 Let's forget about catastrophic forgetting! 🚀

rbf

Work in progress... There may be bugs and features might be missing.

Features

  • Hydra Configuration
  • WANDB Logging
  • Lightning Fabric
  • Custom Plugin System for Methods
  • Incremental Classifier
Method Status Custom Layers Status Model Status Scenario Status Dataset Status
Naive Local MLP CI MNIST
LwF RBF LeNet ⭕️ DI ImageNet
EWC SingleRBFHead TI CIFAR100
Sharpening MultiRBFHead II TinyImageNet
SI KAN Permuted ⭕️
MAS LocalHead ⭕️
RBFReg LocalConv2D ⭕️

Results

SplitMNIST

Method Full MLP RBF+MultiRBFHead RBF+SingleRBFHead MLP+MultiRBFHead
Naive 19.94 19.95
LwF 39.91 NA NA
EWC 54.65 19.74 21.86 51.81
SI 32.32 12.62 19.32 31.56
MAS 36.51 10.18 26.58 49.24
Sharpening 19.93
NReg NA

Commands

Setup

conda create -n "lcl" python=3.9
pip install -r requirements.txt
cp example.env .env
edit .env

Launching Experiments

conda activate lcl
WANDB_MODE={offline/online} HYDRA_FULL_ERROR={0/1} python src/main.py --config-name config 

Acknowledgements

  • Project Structure based on template by Bartłomiej Sobieski
  • PyTorchRBFLayer repo by Alessio Russo