Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions osl_dynamics/__init__.py
Original file line number Diff line number Diff line change
@@ -1,16 +1,16 @@
import logging
from pkg_resources import DistributionNotFound, get_distribution
from importlib.metadata import PackageNotFoundError, version

from osl_dynamics.config_api.pipeline import run_pipeline


# Setup the version
try:
__version__ = get_distribution("osl-dynamics").version
except DistributionNotFound:
__version__ = version("osl-dynamics")
except PackageNotFoundError:
__version__ = "unknown"
finally:
del get_distribution, DistributionNotFound
del version, PackageNotFoundError

# Configure logging
logging.basicConfig(
Expand Down
16 changes: 8 additions & 8 deletions osl_dynamics/analysis/spectral.py
Original file line number Diff line number Diff line change
Expand Up @@ -1260,15 +1260,15 @@
n_lags = autocorr_func.shape[-1]
nfft = max(nfft, 2 ** nextpow2(n_lags))

# Calculate the argments to keep for the given frequency range

Check failure on line 1263 in osl_dynamics/analysis/spectral.py

View workflow job for this annotation

GitHub Actions / Check for spelling errors

argments ==> arguments
f = np.arange(nfft // 2 + 1) * sampling_frequency / nfft
[min_arg, max_arg] = get_frequency_args_range(f, frequency_range)
f = f[min_arg:max_arg + 1]
f = f[min_arg : max_arg + 1]

# Calculate cross power spectra as the Fourier transform of the
# auto/cross-correlation function
psd = np.fft.fft(autocorr_func, nfft)
psd = psd[..., min_arg:max_arg + 1]
psd = psd[..., min_arg : max_arg + 1]
psd = abs(psd)

# Normalise the power spectra
Expand Down Expand Up @@ -1385,7 +1385,7 @@

# Only keep a particular frequency range
[min_arg, max_arg] = get_frequency_args_range(f, frequency_range)
f = f[min_arg:max_arg + 1]
f = f[min_arg : max_arg + 1]

# Number of frequency bins
n_freq = max_arg - min_arg + 1
Expand Down Expand Up @@ -1428,7 +1428,7 @@

# Calculate cross spectra for the sub-window
X = np.fft.fft(x_sub_window, nfft)
X = X[..., min_arg:max_arg + 1]
X = X[..., min_arg : max_arg + 1]
XY = np.conj(X)[np.newaxis, :, :] * X[:, np.newaxis, :]
XY_sub_window[k] = XY[m, n]

Expand Down Expand Up @@ -1463,7 +1463,7 @@

# Calculate PSD for the sub-window
X = np.fft.fft(x_sub_window, nfft)
X = X[..., min_arg:max_arg + 1]
X = X[..., min_arg : max_arg + 1]
XX_sub_window[k] = np.real(np.conj(X) * X)

# Average the cross spectra for each sub-window
Expand Down Expand Up @@ -1696,7 +1696,7 @@

# Only keep a particular frequency range
[min_arg, max_arg] = get_frequency_args_range(f, frequency_range)
f = f[min_arg:max_arg + 1]
f = f[min_arg : max_arg + 1]

# Number of frequency bins
n_freq = max_arg - min_arg + 1
Expand Down Expand Up @@ -1739,7 +1739,7 @@

# Fourier transform
X = np.fft.fft(x_sub_window, nfft)
X = X[..., min_arg:max_arg + 1]
X = X[..., min_arg : max_arg + 1]

# Calculate cross spectra for the sub-window
XY = np.conj(X)[:, :, np.newaxis, :] * X[:, np.newaxis, :, :]
Expand Down Expand Up @@ -1776,7 +1776,7 @@

# Fourier transform
X = np.fft.fft(x_sub_window, nfft)
X = X[..., min_arg:max_arg + 1]
X = X[..., min_arg : max_arg + 1]

# Calculate spectra for the sub-window
XX = np.real(np.conj(X) * X)
Expand Down