Skip to content
Open
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
83 changes: 83 additions & 0 deletions PreProc/inputdata/atm/cam/ggas/create_TIPMIP_emission_file.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
import numpy as np
import sys
import xarray as xr
from scipy.io import netcdf
import pandas as pd


# load grgid area from fx
dataset = xr.open_dataset('/mnt/bgcdata-ns2980k/ffr043/TipESM/data/NorESM2-LM/1pctCO2/fx/areacella_fx_NorESM2-LM_1pctCO2_r1i1p1f1_gn.nc')
areavar = dataset['areacella']

# load example emission file
inpath = '/mnt/bgcdata-ns2980k/ffr043/TipESM/data'
dataset = xr.open_mfdataset(inpath+'/emissions-cmip6_CO2_anthro_surface_175001-201512_fv_1.9x2.5_c20181011.nc', decode_times=False, format="NETCDF3_64BIT")
co2var = dataset['CO2_flux']

# calculate emissions based on TCRE (Arora et al., 2020)
TCRE = 1.32 #°C EgC-1
E = 1000 * 0.02 / TCRE #GtC yr-1
Edata = np.ones((250*12, 1)) * E

# distribute emissions over time and space
# translated to python from matlab based on script by J. Schwinger
nyears = 250
nmonth = nyears * 12
nlon = 144
nlat = 96
start_year=1
time_bnds = np.zeros((2, nmonth))
time = np.zeros(nmonth)
date = np.zeros(nmonth, dtype=np.int32)
co2flx = np.zeros((nmonth, nlat, nlon))
dayim = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
days = np.cumsum([0] + dayim[:-1]) + 1
daye = np.cumsum(dayim)

# (assumed) midpoint of each month in the format MMDD
date_mint = [116, 215, 316, 416, 516, 616, 716, 816, 916, 1016, 1116, 1216]
for iy in range(1, nyears + 1):
for im in range(1, 13):
idx = (iy - 1) * 12 + im - 1
time_bnds[0, idx] = 365 * (iy - 1) + days[im - 1] - 1
time_bnds[1, idx] = 365 * (iy - 1) + daye[im - 1]
time[idx] = np.sum(time_bnds[:, idx]) / 2.0
date[idx] = (1850 + (iy - 1)) * 10000 + date_mint[im - 1]

if start_year <= iy < start_year + 250:
# unit correction - time
dt = (time_bnds[1, idx] - time_bnds[0, idx]) * 86400.0
# Spatially, emissions are distributed evenly over the sphere and months
totarea = areavar.sum().values
# unit correction - Gt C to kg CO2
co2flx[idx, :, :] = Edata[idx - (start_year - 1) *12] * 1e12 * 3.664 / dt / totarea / 12
else:
co2flx[idx, :, :] = 0.0


# write emissions to example dataset
dataset = dataset.isel(time=slice(0,3000))
dataset['CO2_flux'].values = co2flx

# assign attributes
dataset = dataset.assign_attrs({'data_title':'Annual Anthropogenic Emissions of CO2 based on TCRE prepared for TIPMIP'})
dataset = dataset.assign_attrs({'data_creator':'F. Froeb ([email protected])'})
dataset = dataset.assign_attrs({'creation_date':'2024-08-03'})

#set encoding for netcdf file
encoding = {
'time':{'_FillValue': None},
'time_bnds':{'_FillValue': None},
'lon':{'zlib': True, 'shuffle': False, 'complevel': 1, 'fletcher32': False, 'contiguous': False,
'dtype': 'float64', '_FillValue':None},
'lat':{'zlib': True, 'shuffle': False, 'complevel': 1, 'fletcher32': False, 'contiguous': False,
'dtype': 'float64', '_FillValue':None},
'CO2_flux':{'zlib': True, 'shuffle': True, 'complevel': 9, 'fletcher32': False, 'contiguous': False,
'dtype': 'float32', 'missing_value': 1e+20, '_FillValue': 1e+20}
}

#write netcdf
dataset.to_netcdf('/mnt/bgcdata-ns2980k/ffr043/TipESM/data/emissions-ESM-tipmip_CO2_anthro_surface_185001-209912_fv_1.9x2.5_c20240803.nc', mode="w", format="NETCDF3_64BIT", encoding=encoding, unlimited_dims='time')