Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,212 @@
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES.
//
//===----------------------------------------------------------------------====//

#ifndef _CUDA_STD___NEGATIVE_BINOMIAL_DISTRIBUTION_H
#define _CUDA_STD___NEGATIVE_BINOMIAL_DISTRIBUTION_H

#include <cuda/std/detail/__config>

#if defined(_CCCL_IMPLICIT_SYSTEM_HEADER_GCC)
# pragma GCC system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_CLANG)
# pragma clang system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_MSVC)
# pragma system_header
#endif // no system header

#include <cuda/std/__limits/numeric_limits.h>
#include <cuda/std/__random/bernoulli_distribution.h>
#include <cuda/std/__random/gamma_distribution.h>
#include <cuda/std/__random/is_valid.h>
#include <cuda/std/__random/poisson_distribution.h>
#if !_CCCL_COMPILER(NVRTC)
# include <ios>
#endif // !_CCCL_COMPILER(NVRTC)

#include <cuda/std/__cccl/prologue.h>

_CCCL_BEGIN_NAMESPACE_CUDA_STD

template <class _IntType = int>
class negative_binomial_distribution
{
static_assert(__libcpp_random_is_valid_inttype<_IntType>, "IntType must be a supported integer type");

public:
// types
using result_type = _IntType;

class param_type
{
result_type __k_ = result_type{1};
double __p_ = 0.5;

public:
using distribution_type = negative_binomial_distribution;

_CCCL_API constexpr explicit param_type(result_type __k = 1, double __p = 0.5) noexcept
: __k_{__k}
, __p_{__p}
{}

[[nodiscard]] _CCCL_API constexpr result_type k() const noexcept
{
return __k_;
}
[[nodiscard]] _CCCL_API constexpr double p() const noexcept
{
return __p_;
}

[[nodiscard]] _CCCL_API friend constexpr bool operator==(const param_type& __x, const param_type& __y) noexcept
{
return __x.__k_ == __y.__k_ && __x.__p_ == __y.__p_;
}
#if _CCCL_STD_VER <= 2017
[[nodiscard]] _CCCL_API friend constexpr bool operator!=(const param_type& __x, const param_type& __y) noexcept
{
return !(__x == __y);
}
#endif // _CCCL_STD_VER <= 2017
};

private:
param_type __p_{};

public:
// constructor and reset functions
constexpr negative_binomial_distribution() noexcept = default;

_CCCL_API constexpr explicit negative_binomial_distribution(result_type __k, double __p = 0.5) noexcept
: __p_{__k, __p}
{}
_CCCL_API constexpr explicit negative_binomial_distribution(const param_type& __p) noexcept
: __p_{__p}
{}
_CCCL_API constexpr void reset() noexcept {}

// generating functions
template <class _URng>
[[nodiscard]] _CCCL_API result_type operator()(_URng& __g)
{
return (*this)(__g, __p_);
}
template <class _URng>
[[nodiscard]] _CCCL_API result_type operator()(_URng& __urng, const param_type& __pr)
{
static_assert(__cccl_random_is_valid_urng<_URng>, "URng must meet the UniformRandomBitGenerator requirements");
const result_type __k = __pr.k();
const double __p = __pr.p();
// When the number of bits in _IntType is small, we are too likely to
// overflow __f below to use this technique.
if (__k <= 21 * __p && sizeof(_IntType) > 1)
{
bernoulli_distribution __gen(__p);
result_type __f = 0;
result_type __s = 0;
while (__s < __k)
{
if (__gen(__urng))
{
++__s;
}
else
{
++__f;
}
}
return __f;
}
return poisson_distribution<result_type>(gamma_distribution<double>(__k, (1 - __p) / __p)(__urng))(__urng);
}

// property functions
[[nodiscard]] _CCCL_API constexpr result_type k() const noexcept
{
return __p_.k();
}
[[nodiscard]] _CCCL_API constexpr double p() const noexcept
{
return __p_.p();
}

[[nodiscard]] _CCCL_API constexpr param_type param() const noexcept
{
return __p_;
}
_CCCL_API constexpr void param(const param_type& __p) noexcept
{
__p_ = __p;
}

[[nodiscard]] _CCCL_API static constexpr result_type min() noexcept
{
return 0;
}
[[nodiscard]] _CCCL_API static constexpr result_type max() noexcept
{
return numeric_limits<result_type>::max();
}

[[nodiscard]] _CCCL_API friend constexpr bool
operator==(const negative_binomial_distribution& __x, const negative_binomial_distribution& __y) noexcept
{
return __x.__p_ == __y.__p_;
}
#if _CCCL_STD_VER <= 2017
[[nodiscard]] _CCCL_API friend constexpr bool
operator!=(const negative_binomial_distribution& __x, const negative_binomial_distribution& __y) noexcept
{
return !(__x == __y);
}
#endif // _CCCL_STD_VER <= 2017

#if !_CCCL_COMPILER(NVRTC)
template <class _CharT, class _Traits>
friend ::std::basic_ostream<_CharT, _Traits>&
operator<<(::std::basic_ostream<_CharT, _Traits>& __os, const negative_binomial_distribution& __x)
{
using _Ostream = ::std::basic_ostream<_CharT, _Traits>;
auto __flags = __os.flags();
__os.flags(_Ostream::dec | _Ostream::left | _Ostream::scientific);
_CharT __sp = __os.widen(' ');
_CharT __fill = __os.fill(__sp);
auto __precision = __os.precision(numeric_limits<double>::max_digits10);
__os << __x.k() << __sp << __x.p();
__os.precision(__precision);
__os.fill(__fill);
__os.flags(__flags);
return __os;
}

template <class _CharT, class _Traits>
friend ::std::basic_istream<_CharT, _Traits>&
operator>>(::std::basic_istream<_CharT, _Traits>& __is, negative_binomial_distribution& __x)
{
using _Istream = ::std::basic_istream<_CharT, _Traits>;
auto __flags = __is.flags();
__is.flags(_Istream::skipws);
result_type __k;
double __p;
__is >> __k >> __p;
if (!__is.fail())
{
__x.param(param_type(__k, __p));
}
__is.flags(__flags);
return __is;
}
#endif // !_CCCL_COMPILER(NVRTC)
};

_CCCL_END_NAMESPACE_CUDA_STD

#include <cuda/std/__cccl/epilogue.h>

#endif // _CUDA_STD___NEGATIVE_BINOMIAL_DISTRIBUTION_H
1 change: 1 addition & 0 deletions libcudacxx/include/cuda/std/__random_
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@
#include <cuda/std/__random/gamma_distribution.h>
#include <cuda/std/__random/linear_congruential_engine.h>
#include <cuda/std/__random/lognormal_distribution.h>
#include <cuda/std/__random/negative_binomial_distribution.h>
#include <cuda/std/__random/normal_distribution.h>
#include <cuda/std/__random/philox_engine.h>
#include <cuda/std/__random/poisson_distribution.h>
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES.
//
//===----------------------------------------------------------------------===//
//
// REQUIRES: long_tests

// <random>

// template<class IntType = int>
// class negative_binomial_distribution

#include <cuda/std/__random_>
#include <cuda/std/cassert>

#include "random_utilities/stats_functions.h"
#include "random_utilities/test_distribution.h"
#include "test_macros.h"

template <class T>
struct negative_binomial_cdf
{
using P = typename cuda::std::negative_binomial_distribution<T>::param_type;

__host__ __device__ double operator()(double x, const P& p) const
{
// CDF: F(x; k, p) = I_p(k, x+1) where I_p is the regularized incomplete beta function
// This represents P(X <= x) where X is the number of failures before k successes
if (x < 0)
{
return 0.0;
}
double k = static_cast<double>(p.k());
double prob = p.p();
return incomplete_beta(k, cuda::std::floor(x) + 1.0, prob);
}
};

template <class T>
__host__ __device__ void test()
{
// Cannot be constexpr due to gamma_distribution and log/exp
[[maybe_unused]] const bool test_constexpr = false;
using D = cuda::std::negative_binomial_distribution<T>;
using P = typename D::param_type;
using G = cuda::std::philox4x64;
cuda::std::array<P, 5> params = {P(5, 0.5), P(10, 0.3), P(3, 0.7), P(15, 0.4), P(20, 0.6)};
test_distribution<D, false, G, test_constexpr>(params, negative_binomial_cdf<T>{});
}

int main(int, char**)
{
test<int>();
test<long>();
return 0;
}