-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkernel_gen.py
executable file
·310 lines (270 loc) · 17.5 KB
/
kernel_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import torch
from kernel_spec import BinKernel, CatKernel, RbfKernel
from gpytorch.kernels import AdditiveKernel, ProductKernel, ScaleKernel
"""
Helper functions for generating the additive kernels based on specification in config file.
"""
def generate_kernel(cat_kernel, bin_kernel, sqexp_kernel, cat_int_kernel, bin_int_kernel, covariate_missing_val):
"""
Generate the additive kernel
:param cat_kernel: list of indices from the covariate matrix for the categorical kernel
:param bin_kernel: list of indices from the covariate matrix for the binary kernel
:param sqexp_kernel: list of indices from the covariate matrix for the squared exponential kernel
:param cat_int_kernel: list of dictionaries with indices for the interaction kernel between a categorical and continuous covariate
E.g.: [{'cont_covariate':0, 'cat_covariate':2}, {'cont_covariate':0, 'cat_covariate':3}]
:param bin_int_kernel: list of dictionaries with indices for the interaction kernel between a binary and continuous covariate
E.g.: [{'cont_covariate':1, 'bin_covariate':4}]
:param covariate_missing_val: list of dictionaries with indices from the covariate matrix with missing values
and their corresponding masks
E.g.: [{'covariate':0, 'mask': 3}]
:return: an instance of GPyTorch AdditiveKernel
"""
covariate_missing = [dict_instance['covariate'] for dict_instance in covariate_missing_val]
additive_kernel = AdditiveKernel()
# categorical kernels
for idx in cat_kernel:
if idx in covariate_missing:
dict_instance = covariate_missing_val[covariate_missing.index(idx)]
additive_kernel.kernels.append(ScaleKernel(
CatKernel(active_dims=idx) *
BinKernel(active_dims=dict_instance['mask'], value=1)))
else:
additive_kernel.kernels.append(ScaleKernel(CatKernel(active_dims=idx)))
# continuous kernels
for idx in sqexp_kernel:
if idx in covariate_missing:
dict_instance = covariate_missing_val[covariate_missing.index(idx)]
additive_kernel.kernels.append(ScaleKernel(
RbfKernel(active_dims=idx) *
BinKernel(active_dims=dict_instance['mask'], value=1)))
else:
additive_kernel.kernels.append(ScaleKernel(RbfKernel(active_dims=idx)))
# binary kernels
for idx in bin_kernel:
if idx in covariate_missing:
dict_instance = covariate_missing_val[covariate_missing.index(idx)]
additive_kernel.kernels.append(ScaleKernel(
BinKernel(active_dims=idx, value=1) *
BinKernel(active_dims=dict_instance['mask'], value=1)))
else:
additive_kernel.kernels.append(ScaleKernel(BinKernel(active_dims=idx, value=1)))
# interaction kernels (categorical)
for dict_instance_kernel in cat_int_kernel:
if dict_instance_kernel['cat_covariate'] in covariate_missing:
dict_instance = covariate_missing_val[covariate_missing.index(dict_instance_kernel['cat_covariate'])]
masked_kernel1 = CatKernel(active_dims=dict_instance_kernel['cat_covariate']) * BinKernel(
active_dims=dict_instance['mask'], value=1)
else:
masked_kernel1 = CatKernel(active_dims=dict_instance_kernel['cat_covariate'])
if dict_instance_kernel['cont_covariate'] in covariate_missing:
dict_instance = covariate_missing_val[covariate_missing.index(dict_instance_kernel['cont_covariate'])]
masked_kernel2 = RbfKernel(active_dims=dict_instance_kernel['cont_covariate']) * BinKernel(
active_dims=dict_instance['mask'], value=1)
else:
masked_kernel2 = RbfKernel(active_dims=dict_instance_kernel['cont_covariate'])
additive_kernel.kernels.append(ScaleKernel(ProductKernel(masked_kernel1, masked_kernel2)))
# interaction kernels (binary)
for dict_instance_kernel in bin_int_kernel:
if dict_instance_kernel['bin_covariate'] in covariate_missing:
dict_instance = covariate_missing_val[covariate_missing.index(dict_instance_kernel['bin_covariate'])]
masked_kernel1 = BinKernel(active_dims=dict_instance_kernel['bin_covariate'], value=1) * BinKernel(
active_dims=dict_instance['mask'], value=1)
else:
masked_kernel1 = BinKernel(active_dims=dict_instance_kernel['bin_covariate'], value=1)
if dict_instance_kernel['cont_covariate'] in covariate_missing:
dict_instance = covariate_missing_val[covariate_missing.index(dict_instance_kernel['cont_covariate'])]
masked_kernel2 = RbfKernel(active_dims=dict_instance_kernel['cont_covariate']) * BinKernel(
active_dims=dict_instance['mask'], value=1)
else:
masked_kernel2 = RbfKernel(active_dims=dict_instance_kernel['cont_covariate'])
additive_kernel.kernels.append(ScaleKernel(ProductKernel(masked_kernel1, masked_kernel2)))
return additive_kernel
def generate_kernel_approx(cat_kernel, bin_kernel, sqexp_kernel, cat_int_kernel, bin_int_kernel, covariate_missing_val,
id_covariate):
"""
Generate two sets of additive kernels. One with id covariate and the other without the id covariate
:param cat_kernel: list of indices from the covariate matrix for the categorical kernel
:param bin_kernel: list of indices from the covariate matrix for the binary kernel
:param sqexp_kernel: list of indices from the covariate matrix for the squared exponential kernel
:param cat_int_kernel: list of dictionaries with indices for the interaction kernel between a categorical and continuous covariate
E.g.: [{'cont_covariate':0, 'cat_covariate':2}, {'cont_covariate':0, 'cat_covariate':3}]
:param bin_int_kernel: list of dictionaries with indices for the interaction kernel between a binary and continuous covariate
E.g.: [{'cont_covariate':1, 'bin_covariate':4}]
:param covariate_missing_val: list of dictionaries with indices from the covariate matrix with missing values
and their corresponding masks
E.g.: [{'covariate':0, 'mask': 3}]
:param id_covariate: index from the covariate matrix for the id covariate
:return: AdditiveKernel without id covariate and AdditiveKernel with id covariate
"""
covariate_missing = [dict_instance['covariate'] for dict_instance in covariate_missing_val]
additive_kernel0 = AdditiveKernel()
additive_kernel1 = AdditiveKernel()
# categorical kernels
for idx in cat_kernel:
if idx in covariate_missing:
dict_instance = covariate_missing_val[covariate_missing.index(idx)]
if idx == id_covariate:
additive_kernel1.kernels.append(ScaleKernel(
CatKernel(active_dims=idx) *
BinKernel(active_dims=dict_instance['mask'], value=1)))
else:
additive_kernel0.kernels.append(ScaleKernel(
CatKernel(active_dims=idx) *
BinKernel(active_dims=dict_instance['mask'], value=1)))
else:
if idx == id_covariate:
additive_kernel1.kernels.append(ScaleKernel(CatKernel(active_dims=idx)))
else:
additive_kernel0.kernels.append(ScaleKernel(CatKernel(active_dims=idx)))
# continuous kernels
for idx in sqexp_kernel:
if idx in covariate_missing:
dict_instance = covariate_missing_val[covariate_missing.index(idx)]
additive_kernel0.kernels.append(ScaleKernel(
RbfKernel(active_dims=idx) *
BinKernel(active_dims=dict_instance['mask'], value=1)))
else:
additive_kernel0.kernels.append(ScaleKernel(RbfKernel(active_dims=idx)))
# binary kernels
for idx in bin_kernel:
if idx in covariate_missing:
dict_instance = covariate_missing_val[covariate_missing.index(idx)]
additive_kernel0.kernels.append(ScaleKernel(
BinKernel(active_dims=idx, value=1) *
BinKernel(active_dims=dict_instance['mask'], value=1)))
else:
additive_kernel0.kernels.append(ScaleKernel(BinKernel(active_dims=idx, value=1)))
# interaction kernels (categorical)
for dict_instance_kernel in cat_int_kernel:
if dict_instance_kernel['cat_covariate'] in covariate_missing:
dict_instance = covariate_missing_val[covariate_missing.index(dict_instance_kernel['cat_covariate'])]
masked_kernel1 = CatKernel(active_dims=dict_instance_kernel['cat_covariate']) * BinKernel(
active_dims=dict_instance['mask'], value=1)
else:
masked_kernel1 = CatKernel(active_dims=dict_instance_kernel['cat_covariate'])
if dict_instance_kernel['cont_covariate'] in covariate_missing:
dict_instance = covariate_missing_val[covariate_missing.index(dict_instance_kernel['cont_covariate'])]
masked_kernel2 = RbfKernel(active_dims=dict_instance_kernel['cont_covariate']) * BinKernel(
active_dims=dict_instance['mask'], value=1)
else:
masked_kernel2 = RbfKernel(active_dims=dict_instance_kernel['cont_covariate'])
if dict_instance_kernel['cat_covariate'] == id_covariate:
additive_kernel1.kernels.append(ScaleKernel(ProductKernel(masked_kernel1, masked_kernel2)))
else:
additive_kernel0.kernels.append(ScaleKernel(ProductKernel(masked_kernel1, masked_kernel2)))
# interaction kernels (binary)
for dict_instance_kernel in bin_int_kernel:
if dict_instance_kernel['bin_covariate'] in covariate_missing:
dict_instance = covariate_missing_val[covariate_missing.index(dict_instance_kernel['bin_covariate'])]
masked_kernel1 = BinKernel(active_dims=dict_instance_kernel['bin_covariate'], value=1) * BinKernel(
active_dims=dict_instance['mask'], value=1)
else:
masked_kernel1 = BinKernel(active_dims=dict_instance_kernel['bin_covariate'], value=1)
if dict_instance_kernel['cont_covariate'] in covariate_missing:
dict_instance = covariate_missing_val[covariate_missing.index(dict_instance_kernel['cont_covariate'])]
masked_kernel2 = RbfKernel(active_dims=dict_instance_kernel['cont_covariate']) * BinKernel(
active_dims=dict_instance['mask'], value=1)
else:
masked_kernel2 = RbfKernel(active_dims=dict_instance_kernel['cont_covariate'])
additive_kernel0.kernels.append(ScaleKernel(ProductKernel(masked_kernel1, masked_kernel2)))
return additive_kernel0, additive_kernel1
def generate_kernel_batched(latent_dim, cat_kernel, bin_kernel, sqexp_kernel, cat_int_kernel, bin_int_kernel, covariate_missing_val,
id_covariate):
"""
Generate two additive kernels. One with id covariate and the other without the id covariate
:param latent_dim: number of latent dimensions
:param cat_kernel: list of indices from the covariate matrix for the categorical kernel
:param bin_kernel: list of indices from the covariate matrix for the binary kernel
:param sqexp_kernel: list of indices from the covariate matrix for the squared exponential kernel
:param cat_int_kernel: list of dictionaries with indices for the interaction kernel between a categorical and continuous covariate
E.g.: [{'cont_covariate':0, 'cat_covariate':2}, {'cont_covariate':0, 'cat_covariate':3}]
:param bin_int_kernel: list of dictionaries with indices for the interaction kernel between a binary and continuous covariate
E.g.: [{'cont_covariate':1, 'bin_covariate':4}]
:param covariate_missing_val: list of dictionaries with indices from the covariate matrix with missing values
and their corresponding masks
E.g.: [{'covariate':0, 'mask': 3}]
:param id_covariate: index from the covariate matrix for the id covariate
:return: AdditiveKernel without id covariate and AdditiveKernel with id covariate
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
covariate_missing = [dict_instance['covariate'] for dict_instance in covariate_missing_val]
additive_kernel0 = AdditiveKernel()
additive_kernel1 = AdditiveKernel()
# categorical kernels
for idx in cat_kernel:
if idx in covariate_missing:
dict_instance = covariate_missing_val[covariate_missing.index(idx)]
if idx == id_covariate:
additive_kernel1.kernels.append(ScaleKernel(
CatKernel(active_dims=idx) *
BinKernel(active_dims=dict_instance['mask'], value=1),
batch_shape=torch.Size([latent_dim])))
else:
additive_kernel0.kernels.append(ScaleKernel(
CatKernel(active_dims=idx) *
BinKernel(active_dims=dict_instance['mask'], value=1),
batch_shape=torch.Size([latent_dim])))
else:
if idx == id_covariate:
additive_kernel1.kernels.append(ScaleKernel(CatKernel(active_dims=idx), batch_shape=torch.Size([latent_dim])))
else:
additive_kernel0.kernels.append(ScaleKernel(CatKernel(active_dims=idx), batch_shape=torch.Size([latent_dim])))
# continuous kernels
for idx in sqexp_kernel:
if idx in covariate_missing:
dict_instance = covariate_missing_val[covariate_missing.index(idx)]
additive_kernel0.kernels.append(ScaleKernel(
RbfKernel(active_dims=idx, batch_shape=torch.Size([latent_dim])) *
BinKernel(active_dims=dict_instance['mask'], value=1),
batch_shape=torch.Size([latent_dim])))
else:
additive_kernel0.kernels.append(ScaleKernel(RbfKernel(active_dims=idx, batch_shape=torch.Size([latent_dim])),
batch_shape=torch.Size([latent_dim])))
# binary kernels
for idx in bin_kernel:
if idx in covariate_missing:
dict_instance = covariate_missing_val[covariate_missing.index(idx)]
additive_kernel0.kernels.append(ScaleKernel(
BinKernel(active_dims=idx, value=1) *
BinKernel(active_dims=dict_instance['mask'], value=1),
batch_shape=torch.Size([latent_dim])))
else:
additive_kernel0.kernels.append(ScaleKernel(BinKernel(active_dims=idx, value=1),
batch_shape=torch.Size([latent_dim])))
# interaction kernels (categorical)
for dict_instance_kernel in cat_int_kernel:
if dict_instance_kernel['cat_covariate'] in covariate_missing:
dict_instance = covariate_missing_val[covariate_missing.index(dict_instance_kernel['cat_covariate'])]
masked_kernel1 = CatKernel(active_dims=dict_instance_kernel['cat_covariate']) * BinKernel(
active_dims=dict_instance['mask'], value=1)
else:
masked_kernel1 = CatKernel(active_dims=dict_instance_kernel['cat_covariate'])
if dict_instance_kernel['cont_covariate'] in covariate_missing:
dict_instance = covariate_missing_val[covariate_missing.index(dict_instance_kernel['cont_covariate'])]
masked_kernel2 = RbfKernel(active_dims=dict_instance_kernel['cont_covariate'], batch_shape=torch.Size([latent_dim])) * BinKernel(
active_dims=dict_instance['mask'], value=1)
else:
masked_kernel2 = RbfKernel(active_dims=dict_instance_kernel['cont_covariate'], batch_shape=torch.Size([latent_dim]))
if dict_instance_kernel['cat_covariate'] == id_covariate:
additive_kernel1.kernels.append(ScaleKernel(ProductKernel(masked_kernel1, masked_kernel2),
batch_shape=torch.Size([latent_dim])))
else:
additive_kernel0.kernels.append(ScaleKernel(ProductKernel(masked_kernel1, masked_kernel2),
batch_shape=torch.Size([latent_dim])))
# interaction kernels (binary)
for dict_instance_kernel in bin_int_kernel:
if dict_instance_kernel['bin_covariate'] in covariate_missing:
dict_instance = covariate_missing_val[covariate_missing.index(dict_instance_kernel['bin_covariate'])]
masked_kernel1 = BinKernel(active_dims=dict_instance_kernel['bin_covariate'], value=1) * BinKernel(
active_dims=dict_instance['mask'], value=1)
else:
masked_kernel1 = BinKernel(active_dims=dict_instance_kernel['bin_covariate'], value=1)
if dict_instance_kernel['cont_covariate'] in covariate_missing:
dict_instance = covariate_missing_val[covariate_missing.index(dict_instance_kernel['cont_covariate'])]
masked_kernel2 = RbfKernel(active_dims=dict_instance_kernel['cont_covariate'], batch_shape=torch.Size([latent_dim])) * BinKernel(
active_dims=dict_instance['mask'], value=1)
else:
masked_kernel2 = RbfKernel(active_dims=dict_instance_kernel['cont_covariate'], batch_shape=torch.Size([latent_dim]))
additive_kernel0.kernels.append(ScaleKernel(ProductKernel(masked_kernel1, masked_kernel2),
batch_shape=torch.Size([latent_dim])))
return additive_kernel0.to(device), additive_kernel1.to(device)