Implementation of recurrence-free quantum reservoir computing (RF-QRC) with denoising methods for optimal training under finite sampling.
src/Notebook.ipynb– Main workflow notebook: training and prediction with RF-QRC, QRC, and classical reservoirs.src/QRC/rfqrc.py– Recurrence-free quantum reservoir implementation (Qiskit).src/QRC/qrc.py– Standard quantum reservoir implementation.src/QRC/crc.py– Classical reservoir computing / Echo State Network implementation.src/QRC/denoise.py– Denoising routines (SVD truncation, filtering).src/QRC/systems.py– Dynamical systems definitions (e.g., Lorenz63, Lorenz96).src/QRC/validation.py– Hyperparameter search and recycle validation routines.
Install dependencies:
pip install -r requirements.txt
Then run the following notebook
python Notebook.ipynbIf you use this code in your research, please cite the corresponding paper:
Robust quantum reservoir computers for forecasting chaotic dynamics: generalized synchronization and stability (https://arxiv.org/abs/2506.22335)