Skip to content

"SuperstarGAN: Generative adversarial networks for image-to-image translation in large-scale domains" in Neural Networks (Volume 162, May 2023, Pages 330-339).

Notifications You must be signed in to change notification settings

KKhyeok/SuperstarGAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SuperstarGAN: Generative adversarial networks for image-to-image translation in large-scale domains

Training/Testing networks

To train SuperstarGAN on AFHQ, you must sort the dataset directory as AFHQ.

To train SuperstarGAN on CelebA or AFHQ, run the training script below.

# Train SuperstarGAN using the CelebA dataset:
python main.py 

# Train SuperstarGAN using the AFHQ dataset:
python main.py --dataset AFHQ --c_dim 7 --log_dir superstargan/afhq/logs --model_save_dir superstarGAN/afhq/models \
               --sample_dir superstarGAN/afhq/samples --result_dir superstarGAN/afhq/results

# Test SuperstartarGAN using the CelebA dataset:
python main.py --mode test 

# Test SuperstartarGAN using the AFHQ dataset:
python main.py --mode test --dataset AFHQ --c_dim 7 --log_dir superstargan/afhq/logs --model_save_dir superstarGAN/afhq/models \
               --sample_dir superstarGAN/afhq/samples --result_dir superstarGAN/afhq/results

Acknowledgements

This research was supported by the Chung-Ang University Graduate Research Scholarship in 2022 as well as the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1F1A1050977).

The source code is based on the Original StarGAN source code

About

"SuperstarGAN: Generative adversarial networks for image-to-image translation in large-scale domains" in Neural Networks (Volume 162, May 2023, Pages 330-339).

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages