The Consciousness System Project is an advanced AI simulation that integrates multiple machine learning techniques to mimic cognitive processes. It combines:
- Generative Adversarial Networks (GANs) for creative content generation
- Deep Q-Learning (DQN) for adaptive decision-making
- Latent reasoning for refining representations
- Memory management across multiple levels
- Emotion simulation for dynamic responses
- Online data fetching for contextual adaptation
This system is designed to process sensory inputs, generate creative outputs, and simulate conscious behavior.
- Generative Creativity – Uses GANs to produce unique embeddings from input data.
- Dynamic Feedback – Implements a DQN system for real-time learning and adaptation.
- Latent Reasoning – Enhances representation through GRU-based recurrent modules.
- Memory Management – Supports different types of memory (sensorial, operational, long-term, etc.).
- Online Data Integration – Fetches relevant data from the web using Google Custom Search API.
- Sandbox Simulation – Updates an internal environment dynamically to reflect system state.
Follow these steps to set up the project:
- Clone the repository:
git clone https://github.com/K1m1k/Scintilla.git
cd Scintilla
- Create a virtual environment (optional but recommended):
python3 -m venv venv
source venv/bin/activate # On Linux/macOS
venv\Scripts\activate # On Windows
- Install dependencies:
pip install -r requirements.txt
- Obtain API keys for online data fetching:
- Sign up for a Google Custom Search API key.
- Replace
YOUR_GOOGLE_API_KEY
andYOUR_CSE_ID
in the code.
- Run the project:
python main.py
The main entry point of the project is main.py
. It processes a list of raw inputs and generates a conscious response.
raw_inputs = [
"I am feeling happy today.",
"The weather is sunny and warm.",
"I had a great conversation with my friend.",
"I am learning new things every day."
]
consciousness_system.simulate_consciousness(raw_inputs)
output = consciousness_system.produce_output()
print(output)
Scintilla/
├── gan_system/
│ ├── __init__.py
│ └── gan.py
├── dqn_system/
│ ├── __init__.py
│ └── dqn.py
├── latent_reasoning/
│ ├── __init__.py
│ └── latent_module.py
├── memory/
│ ├── __init__.py
│ └── memory.py
├── consciousness/
│ ├── __init__.py
│ └── consciousness.py
├── utils/
│ ├── __init__.py
│ └── utils.py
├── main.py
├── requirements.txt
└── README.md
- GAN System (
gan_system/gan.py
) – Generates creative outputs. - DQN System (
dqn_system/dqn.py
) – Handles adaptive learning and feedback. - Latent Reasoning Module (
latent_reasoning/latent_module.py
) – Refines representations iteratively. - Memory Management (
memory/memory.py
) – Manages various memory types. - Consciousness System (
consciousness/consciousness.py
) – Integrates all components. - Utilities (
utils/utils.py
) – Provides helper functions like online data fetching.
Contributions are welcome! Follow these steps to contribute:
- Fork the repository.
- Create a new branch for your feature or bug fix.
- Commit your changes and push them.
- Submit a pull request.
This project is licensed under the MIT License. You are free to use, modify, and distribute this software under the terms of the MIT License. See the LICENSE
file for details.
If you like this project, give it a ⭐ on GitHub!