Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Changed: avoid collect in NonLinMPC and MovingHorizonEstimator objective and constraints #46

Merged
merged 6 commits into from
Apr 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 7 additions & 7 deletions docs/src/manual/nonlinmpc.md
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,7 @@ The vectors `σQ` and σR `σR` are the standard deviations of the process and s
respectively. The value for the velocity ``ω`` is higher here (`σQ` second value) since
``\dot{ω}(t)`` equation includes an uncertain parameter: the friction coefficient ``K``.
Also, the argument `nint_u` explicitly adds one integrating state at the model input, the
motor torque ``τ`` , with an associated standard deviation `σQint_u` of 0.1 N m. The
motor torque ``τ``, with an associated standard deviation `σQint_u` of 0.1 N m. The
estimator tuning is tested on a plant with a 25 % larger friction coefficient ``K``:

```@example 1
Expand All @@ -108,12 +108,12 @@ As the motor torque is limited to -1.5 to 1.5 N m, we incorporate the input cons
a [`NonLinMPC`](@ref):

```@example 1
nmpc = NonLinMPC(estim, Hp=20, Hc=2, Mwt=[0.5], Nwt=[2.5])
nmpc = NonLinMPC(estim, Hp=20, Hc=2, Mwt=[0.5], Nwt=[2.5], Cwt=Inf)
nmpc = setconstraint!(nmpc, umin=[-1.5], umax=[+1.5])
```

We test `mpc` performance on `plant` by imposing an angular setpoint of 180° (inverted
position):
The option `Cwt=Inf` disables constraint softening. We test `mpc` performance on `plant` by
imposing an angular setpoint of 180° (inverted position):

```@example 1
using Logging; disable_logging(Warn) # hide
Expand Down Expand Up @@ -185,7 +185,7 @@ function JE(UE, ŶE, _ )
τ, ω = UE[1:end-1], ŶE[2:2:end-1]
return Ts*sum(τ.*ω)
end
empc = NonLinMPC(estim2, Hp=20, Hc=2, Mwt=[0.5, 0], Nwt=[2.5], Ewt=3.5e3, JE=JE)
empc = NonLinMPC(estim2, Hp=20, Hc=2, Mwt=[0.5, 0], Nwt=[2.5], Cwt=Inf, Ewt=3.5e3, JE=JE)
empc = setconstraint!(empc, umin=[-1.5], umax=[+1.5])
```

Expand Down Expand Up @@ -250,7 +250,7 @@ A [`SteadyKalmanFilter`](@ref) and a [`LinMPC`](@ref) are designed from `linmode

```@example 1
kf = SteadyKalmanFilter(linmodel; σQ, σR, nint_u, σQint_u)
mpc = LinMPC(kf, Hp=20, Hc=2, Mwt=[0.5], Nwt=[2.5])
mpc = LinMPC(kf, Hp=20, Hc=2, Mwt=[0.5], Nwt=[2.5], Cwt=Inf)
mpc = setconstraint!(mpc, umin=[-1.5], umax=[+1.5])
```

Expand Down Expand Up @@ -288,7 +288,7 @@ Constructing a [`LinMPC`](@ref) with `DAQP`:
```@example 1
using JuMP, DAQP
daqp = Model(DAQP.Optimizer, add_bridges=false)
mpc2 = LinMPC(kf, Hp=20, Hc=2, Mwt=[0.5], Nwt=[2.5], optim=daqp)
mpc2 = LinMPC(kf, Hp=20, Hc=2, Mwt=[0.5], Nwt=[2.5], Cwt=Inf, optim=daqp)
mpc2 = setconstraint!(mpc2, umin=[-1.5], umax=[+1.5])
```

Expand Down
7 changes: 5 additions & 2 deletions src/controller/execute.jl
Original file line number Diff line number Diff line change
Expand Up @@ -445,7 +445,6 @@ function optim_objective!(mpc::PredictiveController{NT}) where {NT<:Real}
rethrow(err)
end
end
ΔŨcurr, ΔŨlast = value.(ΔŨvar), ΔŨ0
if !issolved(optim)
status = termination_status(optim)
if iserror(optim)
Expand All @@ -457,7 +456,11 @@ function optim_objective!(mpc::PredictiveController{NT}) where {NT<:Real}
end
@debug solution_summary(optim, verbose=true)
end
mpc.ΔŨ .= iserror(optim) ? ΔŨlast : ΔŨcurr
if iserror(optim)
mpc.ΔŨ .= ΔŨ0
else
mpc.ΔŨ .= value.(ΔŨvar)
end
return mpc.ΔŨ
end

Expand Down
68 changes: 24 additions & 44 deletions src/controller/nonlinmpc.jl
Original file line number Diff line number Diff line change
Expand Up @@ -304,6 +304,7 @@ function init_optimization!(mpc::NonLinMPC, optim::JuMP.GenericModel{JNT}) where
Jfunc, gfunc = let mpc=mpc, model=model, ng=ng, nΔŨ=nΔŨ, nŶ=Hp*ny, nx̂=nx̂, nu=nu, nU=Hp*nu
Nc = nΔŨ + 3
last_ΔŨtup_float, last_ΔŨtup_dual = nothing, nothing
ΔŨ_cache::DiffCache{Vector{JNT}, Vector{JNT}} = DiffCache(zeros(JNT, nΔŨ), Nc)
Ŷ_cache::DiffCache{Vector{JNT}, Vector{JNT}} = DiffCache(zeros(JNT, nŶ), Nc)
U_cache::DiffCache{Vector{JNT}, Vector{JNT}} = DiffCache(zeros(JNT, nU), Nc)
g_cache::DiffCache{Vector{JNT}, Vector{JNT}} = DiffCache(zeros(JNT, ng), Nc)
Expand All @@ -313,63 +314,42 @@ function init_optimization!(mpc::NonLinMPC, optim::JuMP.GenericModel{JNT}) where
û_cache::DiffCache{Vector{JNT}, Vector{JNT}} = DiffCache(zeros(JNT, nu), Nc)
Ȳ_cache::DiffCache{Vector{JNT}, Vector{JNT}} = DiffCache(zeros(JNT, nŶ), Nc)
Ū_cache::DiffCache{Vector{JNT}, Vector{JNT}} = DiffCache(zeros(JNT, nU), Nc)
function Jfunc(ΔŨtup::JNT...)
function Jfunc(ΔŨtup::T...)::T where {T <: Real}
ΔŨ1 = ΔŨtup[begin]
Ŷ = get_tmp(Ŷ_cache, ΔŨ1)
ΔŨ = collect(ΔŨtup)
if ΔŨtup !== last_ΔŨtup_float
x̂, x̂next = get_tmp(x̂_cache, ΔŨ1), get_tmp(x̂next_cache, ΔŨ1)
u, û = get_tmp(u_cache, ΔŨ1), get_tmp(û_cache, ΔŨ1)
Ŷ, x̂end = predict!(Ŷ, x̂, x̂next, u, û, mpc, model, ΔŨ)
g = get_tmp(g_cache, ΔŨ1)
g = con_nonlinprog!(g, mpc, model, x̂end, Ŷ, ΔŨ)
if T == JNT
last_ΔŨtup_float = ΔŨtup
else
last_ΔŨtup_dual = ΔŨtup
end
ΔŨ, Ŷ = get_tmp(ΔŨ_cache, ΔŨ1), get_tmp(Ŷ_cache, ΔŨ1)
x̂, x̂next = get_tmp(x̂_cache, ΔŨ1), get_tmp(x̂next_cache, ΔŨ1)
u, û = get_tmp(u_cache, ΔŨ1), get_tmp(û_cache, ΔŨ1)
ΔŨ .= ΔŨtup
Ŷ, x̂end = predict!(Ŷ, x̂, x̂next, u, û, mpc, model, ΔŨ)
g = get_tmp(g_cache, ΔŨ1)
g = con_nonlinprog!(g, mpc, model, x̂end, Ŷ, ΔŨ)
U, Ȳ, Ū = get_tmp(U_cache, ΔŨ1), get_tmp(Ȳ_cache, ΔŨ1), get_tmp(Ū_cache, ΔŨ1)
return obj_nonlinprog!(U, Ȳ, Ū, mpc, model, Ŷ, ΔŨ)
end
function Jfunc(ΔŨtup::ForwardDiff.Dual...)
ΔŨ1 = ΔŨtup[begin]
Ŷ = get_tmp(Ŷ_cache, ΔŨ1)
ΔŨ = collect(ΔŨtup)
if ΔŨtup !== last_ΔŨtup_dual
x̂, x̂next = get_tmp(x̂_cache, ΔŨ1), get_tmp(x̂next_cache, ΔŨ1)
u, û = get_tmp(u_cache, ΔŨ1), get_tmp(û_cache, ΔŨ1)
Ŷ, x̂end = predict!(Ŷ, x̂, x̂next, u, û, mpc, model, ΔŨ)
g = get_tmp(g_cache, ΔŨ1)
g = con_nonlinprog!(g, mpc, model, x̂end, Ŷ, ΔŨ)
last_ΔŨtup_dual = ΔŨtup
end
U, Ȳ, Ū = get_tmp(U_cache, ΔŨ1), get_tmp(Ȳ_cache, ΔŨ1), get_tmp(Ū_cache, ΔŨ1)
return obj_nonlinprog!(U, Ȳ, Ū, mpc, model, Ŷ, ΔŨ)
return obj_nonlinprog!(U, Ȳ, Ū, mpc, model, Ŷ, ΔŨ)::T
end
function gfunc_i(i, ΔŨtup::NTuple{N, JNT}) where N
function gfunc_i(i, ΔŨtup::NTuple{N, T})::T where {N, T <:Real}
ΔŨ1 = ΔŨtup[begin]
g = get_tmp(g_cache, ΔŨ1)
if ΔŨtup !== last_ΔŨtup_float
Ŷ = get_tmp(Ŷ_cache, ΔŨ1)
ΔŨ = collect(ΔŨtup)
x̂, x̂next = get_tmp(x̂_cache, ΔŨ1), get_tmp(x̂next_cache, ΔŨ1)
u, û = get_tmp(u_cache, ΔŨ1), get_tmp(û_cache, ΔŨ1)
Ŷ, x̂end = predict!(Ŷ, x̂, x̂next, u, û, mpc, model, ΔŨ)
g = con_nonlinprog!(g, mpc, model, x̂end, Ŷ, ΔŨ)
last_ΔŨtup_float = ΔŨtup
if T == JNT
isnewvalue = (ΔŨtup !== last_ΔŨtup_float)
isnewvalue && (last_ΔŨtup_float = ΔŨtup)
else
isnewvalue = (ΔŨtup !== last_ΔŨtup_dual)
isnewvalue && (last_ΔŨtup_dual = ΔŨtup)
end
return g[i]
end
function gfunc_i(i, ΔŨtup::NTuple{N, ForwardDiff.Dual}) where N
ΔŨ1 = ΔŨtup[begin]
g = get_tmp(g_cache, ΔŨ1)
if ΔŨtup !== last_ΔŨtup_dual
Ŷ = get_tmp(Ŷ_cache, ΔŨ1)
ΔŨ = collect(ΔŨtup)
if isnewvalue
ΔŨ, Ŷ = get_tmp(ΔŨ_cache, ΔŨ1), get_tmp(Ŷ_cache, ΔŨ1)
x̂, x̂next = get_tmp(x̂_cache, ΔŨ1), get_tmp(x̂next_cache, ΔŨ1)
u, û = get_tmp(u_cache, ΔŨ1), get_tmp(û_cache, ΔŨ1)
ΔŨ .= ΔŨtup
Ŷ, x̂end = predict!(Ŷ, x̂, x̂next, u, û, mpc, model, ΔŨ)
g = con_nonlinprog!(g, mpc, model, x̂end, Ŷ, ΔŨ)
last_ΔŨtup_dual = ΔŨtup
end
return g[i]
return g[i]::T
end
gfunc = [(ΔŨ...) -> gfunc_i(i, ΔŨ) for i in 1:ng]
(Jfunc, gfunc)
Expand Down
66 changes: 23 additions & 43 deletions src/estimator/mhe/construct.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1008,72 +1008,52 @@ function init_optimization!(
Jfunc, gfunc = let estim=estim, model=model, nZ̃=nZ̃, nV̂=nV̂, nX̂=nX̂, ng=ng, nx̂=nx̂, nu=nu, nŷ=nŷ
Nc = nZ̃ + 3
last_Z̃tup_float, last_Z̃tup_dual = nothing, nothing
Z̃_cache::DiffCache{Vector{JNT}, Vector{JNT}} = DiffCache(zeros(JNT, nZ̃), Nc)
V̂_cache::DiffCache{Vector{JNT}, Vector{JNT}} = DiffCache(zeros(JNT, nV̂), Nc)
g_cache::DiffCache{Vector{JNT}, Vector{JNT}} = DiffCache(zeros(JNT, ng), Nc)
X̂_cache::DiffCache{Vector{JNT}, Vector{JNT}} = DiffCache(zeros(JNT, nX̂), Nc)
x̄_cache::DiffCache{Vector{JNT}, Vector{JNT}} = DiffCache(zeros(JNT, nx̂), Nc)
û_cache::DiffCache{Vector{JNT}, Vector{JNT}} = DiffCache(zeros(JNT, nu), Nc)
ŷ_cache::DiffCache{Vector{JNT}, Vector{JNT}} = DiffCache(zeros(JNT, nŷ), Nc)
function Jfunc(Z̃tup::JNT...)
function Jfunc(Z̃tup::T...)::T where {T <: Real}
Z̃1 = Z̃tup[begin]
V̂ = get_tmp(V̂_cache, Z̃1)
Z̃ = collect(Z̃tup)
if Z̃tup !== last_Z̃tup_float
g = get_tmp(g_cache, Z̃1)
X̂ = get_tmp(X̂_cache, Z̃1)
û, ŷ = get_tmp(û_cache, Z̃1), get_tmp(ŷ_cache, Z̃1)
V̂, X̂ = predict!(V̂, X̂, û, ŷ, estim, model, Z̃)
g = con_nonlinprog!(g, estim, model, X̂, V̂, Z̃)
if T == JNT
last_Z̃tup_float = Z̃tup
end
x̄ = get_tmp(x̄_cache, Z̃1)
return obj_nonlinprog!(x̄, estim, model, V̂, Z̃)
end
function Jfunc(Z̃tup::ForwardDiff.Dual...)
Z̃1 = Z̃tup[begin]
V̂ = get_tmp(V̂_cache, Z̃1)
Z̃ = collect(Z̃tup)
if Z̃tup !== last_Z̃tup_dual
g = get_tmp(g_cache, Z̃1)
X̂ = get_tmp(X̂_cache, Z̃1)
û, ŷ = get_tmp(û_cache, Z̃1), get_tmp(ŷ_cache, Z̃1)
V̂, X̂ = predict!(V̂, X̂, û, ŷ, estim, model, Z̃)
g = con_nonlinprog!(g, estim, model, X̂, V̂, Z̃)
else
last_Z̃tup_dual = Z̃tup
end
Z̃, V̂ = get_tmp(Z̃_cache, Z̃1), get_tmp(V̂_cache, Z̃1)
X̂ = get_tmp(X̂_cache, Z̃1)
û, ŷ = get_tmp(û_cache, Z̃1), get_tmp(ŷ_cache, Z̃1)
Z̃ .= Z̃tup
V̂, X̂ = predict!(V̂, X̂, û, ŷ, estim, model, Z̃)
g = get_tmp(g_cache, Z̃1)
g = con_nonlinprog!(g, estim, model, X̂, V̂, Z̃)
x̄ = get_tmp(x̄_cache, Z̃1)
return obj_nonlinprog!(x̄, estim, model, V̂, Z̃)
return obj_nonlinprog!(x̄, estim, model, V̂, Z̃)::T
end
function gfunc_i(i, Z̃tup::NTuple{N, JNT}) where N
function gfunc_i(i, Z̃tup::NTuple{N, T})::T where {N, T <:Real}
Z̃1 = Z̃tup[begin]
g = get_tmp(g_cache, Z̃1)
if Z̃tup !== last_Z̃tup_float
Z̃ = collect(Z̃tup)
V̂ = get_tmp(V̂_cache, Z̃1)
X̂ = get_tmp(X̂_cache, Z̃1)
û, ŷ = get_tmp(û_cache, Z̃1), get_tmp(ŷ_cache, Z̃1)
V̂, X̂ = predict!(V̂, X̂, û, ŷ, estim, model, Z̃)
g = con_nonlinprog!(g, estim, model, X̂, V̂, Z̃)
last_Z̃tup_float = Z̃tup
if T == JNT
isnewvalue = (Z̃tup !== last_Z̃tup_float)
isnewvalue && (last_Z̃tup_float = Z̃tup)
else
isnewvalue = (Z̃tup !== last_Z̃tup_dual)
isnewvalue && (last_Z̃tup_dual = Z̃tup)
end
return g[i]
end
function gfunc_i(i, Z̃tup::NTuple{N, ForwardDiff.Dual}) where N
Z̃1 = Z̃tup[begin]
g = get_tmp(g_cache, Z̃1)
if Z̃tup !== last_Z̃tup_dual
Z̃ = collect(Z̃tup)
V̂ = get_tmp(V̂_cache, Z̃1)
if isnewvalue
Z̃, V̂ = get_tmp(Z̃_cache, Z̃1), get_tmp(V̂_cache, Z̃1)
X̂ = get_tmp(X̂_cache, Z̃1)
û, ŷ = get_tmp(û_cache, Z̃1), get_tmp(ŷ_cache, Z̃1)
Z̃ .= Z̃tup
V̂, X̂ = predict!(V̂, X̂, û, ŷ, estim, model, Z̃)
g = con_nonlinprog!(g, estim, model, X̂, V̂, Z̃)
last_Z̃tup_dual = Z̃tup
end
return g[i]
end
gfunc = [(Z̃...) -> gfunc_i(i, Z̃) for i in 1:ng]
Jfunc, gfunc
(Jfunc, gfunc)
end
register(optim, :Jfunc, nZ̃, Jfunc, autodiff=true)
@NLobjective(optim, Min, Jfunc(Z̃var...))
Expand Down
7 changes: 5 additions & 2 deletions src/estimator/mhe/execute.jl
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,6 @@ function update_estimate!(estim::MovingHorizonEstimator{NT}, u, ym, d) where NT<
end
end
# -------- error handling -------------------------
Z̃curr, Z̃last = value.(Z̃var), Z̃0
if !issolved(optim)
status = termination_status(optim)
if iserror(optim)
Expand All @@ -74,7 +73,11 @@ function update_estimate!(estim::MovingHorizonEstimator{NT}, u, ym, d) where NT<
end
@debug solution_summary(optim, verbose=true)
end
estim.Z̃ .= iserror(optim) ? Z̃last : Z̃curr
if iserror(optim)
estim.Z̃ .= Z̃0
else
estim.Z̃ .= value.(Z̃var)
end
# --------- update estimate -----------------------
estim.Ŵ[1:nŵ*Nk] .= @views estim.Z̃[nx̃+1:nx̃+nŵ*Nk] # update Ŵ with optimum for warm-start
V̂, X̂ = predict!(V̂, X̂, û, ŷ, estim, model, estim.Z̃)
Expand Down
6 changes: 3 additions & 3 deletions src/general.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,11 +7,11 @@ const DEFAULT_CWT = 1e5
const DEFAULT_EWT = 0.0

"Termination status that means 'no solution available'."
const ERROR_STATUSES = [
const ERROR_STATUSES = (
INFEASIBLE, DUAL_INFEASIBLE, LOCALLY_INFEASIBLE, INFEASIBLE_OR_UNBOUNDED,
NUMERICAL_ERROR, INVALID_MODEL, INVALID_OPTION, INTERRUPTED,
OTHER_ERROR
]
)

"Verify that `optim` termination status is `OPTIMAL` or `LOCALLY_SOLVED`."
function issolved(optim::JuMP.GenericModel)
Expand All @@ -22,7 +22,7 @@ end
"Verify that `optim` termination status means 'no solution available'."
function iserror(optim::JuMP.GenericModel)
status = termination_status(optim)
return any(status .== ERROR_STATUSES)
return any(errstatus->isequal(status, errstatus), ERROR_STATUSES)
end

"Evaluate the quadratic programming objective function `0.5x'*H*x + q'*x` at `x`."
Expand Down
2 changes: 1 addition & 1 deletion src/plot_sim.jl
Original file line number Diff line number Diff line change
Expand Up @@ -129,7 +129,7 @@ function sim!(
U_data[:, i] = u
D_data[:, i] = d
X_data[:, i] = plant.x
x = updatestate!(plant, u, d)
updatestate!(plant, u, d)
end
return SimResult(plant, T_data, Y_data, U_data, Y_data,
U_data, U_data, U_data, D_data, X_data, X_data)
Expand Down
10 changes: 6 additions & 4 deletions test/test_state_estim.jl
Original file line number Diff line number Diff line change
Expand Up @@ -682,10 +682,12 @@ end

mhe4 = setconstraint!(MovingHorizonEstimator(nonlinmodel, He=1, nint_ym=0), x̂max=[50,50,50,50])
g_X̂max_end = mhe4.optim.nlp_model.operators.registered_multivariate_operators[end].f
@test g_X̂max_end((1.0, 1.0, 1.0, 1.0)) ≤ 0.0 # test gfunc_i(i,::NTuple{N, Float64})
# test gfunc_i(i,::NTuple{N, ForwardDiff.Dual}) :
@test ForwardDiff.gradient(g_X̂max_end, [1.0, 1.0, 1.0, 1.0]) ≈ [0.0, 0.0, 0.0, 0.0]

# test gfunc_i(i,::NTuple{N, Float64}):
@test g_X̂max_end(
(1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0)) ≤ 0.0
# test gfunc_i(i,::NTuple{N, ForwardDiff.Dual}):
@test ForwardDiff.gradient(
g_X̂max_end, [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0]) ≈ [0, 0, 0, 0, 0, 0, 0, 0]
Q̂ = diagm([1/4, 1/4, 1/4, 1/4].^2)
R̂ = diagm([1, 1].^2)
optim = Model(Ipopt.Optimizer)
Expand Down
Loading