- This is the official repository of the paper "MDSC-Net: Multi-modal Discriminative Sparse Coding Driven RGB-D Classification Network" from IEEE Transactions on Multimedia (TMM). [Paper Link]
Fig.1. The illustration about the RGB-D feature fusion difference between our proposed MDSC model and other sparse based methods.
Fig.2. The motivation and pipeline of the proposed MDSC model.
Fig.3. The network architecture of the proposed MDSC-Net.
- Python >= 3.5
- PyTorch == 1.7.1 is recommended
- opencv-python = =3.4.9.31
- tqdm
- scikit-image == 0.15.0
- scipy == 1.3.1
- Matlab
- For RGB-D image classification task, adopt the Washington RGB-D object dataset (WRGBD) and the JHUIT-50 object dataset for training and testing training and testing.
All the training and testing images for classification task used in this paper can be downloaded from the [Google Drive Link]
https://github.com/JingyiXu404/MDSC-Net.git
https://drive.google.com/drive/folders/15lCYy0HyM1Q1Bw7rH29rJOaZqpmIhVaa?usp=sharing
1. Prepare dataset: If you do not use same datasets as us, place the test images in data/xxx_dataset/
.
xxx_dataset
└── category 1
└── instance 1
├── xxx_crop.png
├── ....
└── xxx_depthsn.png
└── other instances from category 1
└── category 2
└── instance 1
├── xxx_crop.png
├── ....
└── xxx_depthsn.png
└── other instances from category 2
└── other categories
2. Setup configurations: In main.py
.
"dataset_path": "/data/WRGBD/"
3. Run:
export PYTHONPATH=$PYTHONPATH:utils/
python main.py --batch-size 32 --split-no [split number, from 1 to 10] --qloss ['True' for using discriminative loss, 'False' for not] --gpu 'True' --cu 'True' --phase 'test'
If you find our work useful in your research or publication, please cite our work:
release soon
If you have any question about our work or code, please email [email protected]
.