FourierKAN-GCF: Fourier Kolmogorov-Arnold Network - An Effective and Efficient Feature Transformation for Graph Collaborative Filtering
This is the Pytorch implementation for our FourierKAN-GCF paper:
FourierKAN-GCF: Fourier Kolmogorov-Arnold Network - An Effective and Efficient Feature Transformation for Graph Collaborative Filtering
Rethinking feature transformation component in GCNs in recommendation field!
LightGCN simplifies NGCF by remove feature transformation, formally:
NGCF
LightGCN
We point out that
Thanks to the original implementations KAN and FourierKAN.
We use single-layer FourierKAN to replace MLP in feature transformation component and achieve better results than LightGCN and NGCF on MOOC and Amazon Games datasets. Formally:
FourierKAN-GCF
More datasets are yet to be tested, and this work is just a taste of whether KAN can be used for recommendation.
- Python 3.9
- Pytorch 2.1.0
Two public datasets: MOOC, Games
cd ./src
python main.py
Thanks for simplifies Recbole repo. ImRec.
@article{xu2024fourierkan,
title={FourierKAN-GCF: Fourier Kolmogorov-Arnold Network--An Effective and Efficient Feature Transformation for Graph Collaborative Filtering},
author={Xu, Jinfeng and Chen, Zheyu and Li, Jinze and Yang, Shuo and Wang, Wei and Hu, Xiping and Ngai, Edith C-H},
journal={arXiv preprint arXiv:2406.01034},
year={2024}
}