Skip to content

HSU-AviationComputer-DevTeam/AI_Predicting_Pregnancy_Success

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

66 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

image

Project Overview

The project aims to predict pregnancy success using advanced machine learning techniques developed for the LG Aimers Hackathon.

Final Performance

Private Score: 0.74159 (TOP 22%)

👥 Team Members

isshoman123 dongsinwoo espada105
김재원 신동우 홍성인

Technology Stack

  • Python 3.9.7
  • pandas 1.3.5
  • numpy 1.21.6
  • matplotlib 3.5.1
  • seaborn 0.11.2
  • scikit-learn 1.0.2
  • imbalanced-learn 0.8.1
  • catboost 1.0.6
  • scipy 1.7.3

Key Features

Data Preprocessing

  • Class-based missing value handling
  • Advanced feature engineering
  • Strict data leakage prevention

Modeling Strategy

  • 7-fold cross-validation
  • CatBoost algorithm
  • Ensemble techniques

Performance Optimization

  • Detailed hyperparameter tuning
  • Class imbalance handling
  • Feature importance-based selection

Performance Evaluation

  • Evaluated using ROC AUC score
  • Multiple submission strategies:
    1. Single best-performing model
    2. Average ensemble of all folds
    3. Weighted ensemble of top 3 folds
    4. Weighted ensemble of top 5 folds

Solution Highlights

  • Advanced machine learning techniques
  • Sophisticated feature selection
  • Robust cross-validation methodology

About

LG_Aimers_Hackathon

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •