Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion toolkits/collaborative_filtering/als.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -131,7 +131,7 @@ struct ALSVerticesInMemProgram : public GraphChiProgram<VertexDataType, EdgeData
float observation = vertex.edge(e)->get_data();
vertex_data & nbr_latent = latent_factors_inmem[vertex.edge(e)->vertex_id()];
Xty += nbr_latent.pvec * observation;
XtX.triangularView<Eigen::Upper>() += nbr_latent.pvec * nbr_latent.pvec.transpose();
XtX.selfadjointView<Eigen::Upper>().rankUpdate(nbr_latent.pvec);
if (compute_rmse) {
double prediction;
rmse_vec[omp_get_thread_num()] += als_predict(vdata, nbr_latent, observation, prediction);
Expand Down
2 changes: 1 addition & 1 deletion toolkits/collaborative_filtering/libfm.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -314,7 +314,7 @@ int main(int argc, const char ** argv) {
vec user_bias = load_matrix_market_vector(training +"_U_bias.mm", false, true);
vec item_bias = load_matrix_market_vector(training +"_V_bias.mm", false, true);
vec time_bias = load_matrix_market_vector(training+ "_T_bias.mm", false, true);
vec last_item_bias = load_matrix_market_vector(training+"_L_bias.m", false, true);
vec last_item_bias = load_matrix_market_vector(training+"_L_bias.mm", false, true);
for (uint i=0; i<M+N+K+M; i++){
if (i < M)
latent_factors_inmem[i].bias = user_bias[i];
Expand Down
2 changes: 1 addition & 1 deletion toolkits/collaborative_filtering/wals.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -119,7 +119,7 @@ struct WALSVerticesInMemProgram : public GraphChiProgram<VertexDataType, EdgeDat
const edge_data & edge = vertex.edge(e)->get_data();
vertex_data & nbr_latent = latent_factors_inmem[vertex.edge(e)->vertex_id()];
Xty += nbr_latent.pvec * edge.weight * edge.time;
XtX.triangularView<Eigen::Upper>() += nbr_latent.pvec * nbr_latent.pvec.transpose() * edge.time;
XtX.selfadjointView<Eigen::Upper>().rankUpdate(nbr_latent.pvec, edge.time);
if (compute_rmse) {
double prediction;
rmse_vec[omp_get_thread_num()] += wals_predict(vdata, nbr_latent, edge.weight, prediction) * edge.time;
Expand Down