-
Notifications
You must be signed in to change notification settings - Fork 26
LLaVAOneVision1_5 Support #101
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 4 commits
613197c
3f12d70
10e6ef0
b6228d9
b42fd4b
6eeda7d
4da476d
4923c57
e497d7c
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,18 @@ | ||
| from lmms_engine.mapping_func import register_model | ||
|
|
||
| from .configuration_llavaonevision1_5 import Llavaonevision1_5Config | ||
| from .modeling_llavaonevision1_5 import LLaVAOneVision1_5_ForConditionalGeneration | ||
| from .monkey_patch import apply_liger_kernel_to_llava_onevision1_5 | ||
|
|
||
| register_model( | ||
| "llavaonevision1_5", | ||
| Llavaonevision1_5Config, | ||
| LLaVAOneVision1_5_ForConditionalGeneration, | ||
| model_general_type="image_text_to_text", | ||
| ) | ||
|
|
||
| __all__ = [ | ||
| "Llavaonevision1_5Config", | ||
| "LLaVAOneVision1_5_ForConditionalGeneration", | ||
| "apply_liger_kernel_to_llava_onevision1_5", | ||
| ] |
| Original file line number | Diff line number | Diff line change | ||||
|---|---|---|---|---|---|---|
| @@ -0,0 +1,276 @@ | ||||||
| """LLaVALLaVAOneVision1_5 model configuration""" | ||||||
| from transformers.configuration_utils import PretrainedConfig, layer_type_validation | ||||||
| from transformers.modeling_rope_utils import rope_config_validation | ||||||
| from transformers.utils import logging | ||||||
|
|
||||||
| logger = logging.get_logger(__name__) | ||||||
|
|
||||||
|
|
||||||
| class RiceConfig(PretrainedConfig): | ||||||
| model_type = "rice_vit" | ||||||
| base_config_key = "vision_config" | ||||||
|
|
||||||
| def __init__( | ||||||
| self, | ||||||
| depth=24, | ||||||
| embed_dim=1024, | ||||||
| hidden_size=1024, | ||||||
| hidden_act="gelu", | ||||||
| intermediate_size=4096, | ||||||
| num_heads=16, | ||||||
| in_channels=3, | ||||||
| patch_size=14, | ||||||
| spatial_merge_size=2, | ||||||
| temporal_patch_size=1, | ||||||
| initializer_range=0.02, | ||||||
| layer_norm_eps=1e-05, | ||||||
| text_hidden_size=2560, | ||||||
| **kwargs, | ||||||
| ): | ||||||
| super().__init__(**kwargs) | ||||||
|
|
||||||
| self.depth = depth | ||||||
| self.embed_dim = embed_dim | ||||||
| self.hidden_size = hidden_size | ||||||
| self.hidden_act = hidden_act | ||||||
| self.intermediate_size = intermediate_size | ||||||
| self.num_heads = num_heads | ||||||
| self.in_channels = in_channels | ||||||
| self.patch_size = patch_size | ||||||
| self.spatial_merge_size = spatial_merge_size | ||||||
| self.temporal_patch_size = temporal_patch_size | ||||||
| self.initializer_range = initializer_range | ||||||
| self.layer_norm_eps = layer_norm_eps | ||||||
| self.text_hidden_size = text_hidden_size | ||||||
|
|
||||||
|
|
||||||
| class LLaVAOneVision1_5_TextConfig(PretrainedConfig): | ||||||
| r""" | ||||||
| Args: | ||||||
| vocab_size (`int`, *optional*, defaults to 152064): | ||||||
| Vocabulary size of the Qwen2VL model. Defines the number of different tokens that can be represented by the | ||||||
| `inputs_ids` passed when calling [`Qwen2VLModel`] | ||||||
| hidden_size (`int`, *optional*, defaults to 8192): | ||||||
| Dimension of the hidden representations. | ||||||
| intermediate_size (`int`, *optional*, defaults to 29568): | ||||||
| Dimension of the MLP representations. | ||||||
| num_hidden_layers (`int`, *optional*, defaults to 80): | ||||||
| Number of hidden layers in the Transformer encoder. | ||||||
| num_attention_heads (`int`, *optional*, defaults to 64): | ||||||
| Number of attention heads for each attention layer in the Transformer encoder. | ||||||
| num_key_value_heads (`int`, *optional*, defaults to 8): | ||||||
| This is the number of key_value heads that should be used to implement Grouped Query Attention. If | ||||||
| `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | ||||||
| `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When | ||||||
| converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | ||||||
| by meanpooling all the original heads within that group. For more details checkout [this | ||||||
| paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`. | ||||||
| hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | ||||||
| The non-linear activation function (function or string) in the decoder. | ||||||
| max_position_embeddings (`int`, *optional*, defaults to 32768): | ||||||
| The maximum sequence length that this model might ever be used with. | ||||||
| initializer_range (`float`, *optional*, defaults to 0.02): | ||||||
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||||||
| rms_norm_eps (`float`, *optional*, defaults to 1e-05): | ||||||
| The epsilon used by the rms normalization layers. | ||||||
| use_cache (`bool`, *optional*, defaults to `True`): | ||||||
| Whether or not the model should return the last key/values attentions (not used by all models). Only | ||||||
| relevant if `config.is_decoder=True`. | ||||||
| tie_word_embeddings (`bool`, *optional*, defaults to `False`): | ||||||
| Whether the model's input and output word embeddings should be tied. | ||||||
| rope_theta (`float`, *optional*, defaults to 1000000.0): | ||||||
| The base period of the RoPE embeddings. | ||||||
| use_sliding_window (`bool`, *optional*, defaults to `False`): | ||||||
| Whether to use sliding window attention. | ||||||
| sliding_window (`int`, *optional*, defaults to 4096): | ||||||
| Sliding window attention (SWA) window size. If not specified, will default to `4096`. | ||||||
| max_window_layers (`int`, *optional*, defaults to 80): | ||||||
| The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention. | ||||||
| attention_dropout (`float`, *optional*, defaults to 0.0): | ||||||
| The dropout ratio for the attention probabilities. | ||||||
| rope_scaling (`Dict`, *optional*): | ||||||
| Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type | ||||||
| and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value | ||||||
| accordingly. | ||||||
| Expected contents: | ||||||
| `rope_type` (`str`): | ||||||
| The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', | ||||||
| 'llama3'], with 'default' being the original RoPE implementation. | ||||||
| `factor` (`float`, *optional*): | ||||||
| Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In | ||||||
| most scaling types, a `factor` of x will enable the model to handle sequences of length x * | ||||||
| original maximum pre-trained length. | ||||||
| `original_max_position_embeddings` (`int`, *optional*): | ||||||
| Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during | ||||||
| pretraining. | ||||||
| `attention_factor` (`float`, *optional*): | ||||||
| Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention | ||||||
| computation. If unspecified, it defaults to value recommended by the implementation, using the | ||||||
| `factor` field to infer the suggested value. | ||||||
| `beta_fast` (`float`, *optional*): | ||||||
| Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear | ||||||
| ramp function. If unspecified, it defaults to 32. | ||||||
| `beta_slow` (`float`, *optional*): | ||||||
| Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear | ||||||
| ramp function. If unspecified, it defaults to 1. | ||||||
| `short_factor` (`List[float]`, *optional*): | ||||||
| Only used with 'longrope'. The scaling factor to be applied to short contexts (< | ||||||
| `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | ||||||
| size divided by the number of attention heads divided by 2 | ||||||
| `long_factor` (`List[float]`, *optional*): | ||||||
| Only used with 'longrope'. The scaling factor to be applied to long contexts (< | ||||||
| `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | ||||||
| size divided by the number of attention heads divided by 2 | ||||||
| `low_freq_factor` (`float`, *optional*): | ||||||
| Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE | ||||||
| `high_freq_factor` (`float`, *optional*): | ||||||
| Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE | ||||||
| image_token_id (`int`, *optional*): | ||||||
| Token index used as placeholder for image embeddings. | ||||||
| video_token_id (`int`, *optional*): | ||||||
| Token index used as placeholder for video embeddings. | ||||||
| """ | ||||||
|
|
||||||
| model_type = "LLaVAOneVision1_5_text" | ||||||
| base_config_key = "text_config" | ||||||
| keys_to_ignore_at_inference = ["past_key_values"] | ||||||
| # Default tensor parallel plan for base model `Qwen2VL` | ||||||
| base_model_tp_plan = { | ||||||
| "layers.*.self_attn.q_proj": "colwise", | ||||||
| "layers.*.self_attn.k_proj": "colwise", | ||||||
| "layers.*.self_attn.v_proj": "colwise", | ||||||
| "layers.*.self_attn.o_proj": "rowwise", | ||||||
| "layers.*.mlp.gate_proj": "colwise", | ||||||
| "layers.*.mlp.up_proj": "colwise", | ||||||
| "layers.*.mlp.down_proj": "rowwise", | ||||||
| } | ||||||
| base_model_pp_plan = { | ||||||
| "embed_tokens": (["input_ids"], ["inputs_embeds"]), | ||||||
| "layers": (["hidden_states", "attention_mask"], ["hidden_states"]), | ||||||
| "norm": (["hidden_states"], ["hidden_states"]), | ||||||
| } | ||||||
|
|
||||||
| def __init__( | ||||||
| self, | ||||||
| vocab_size=151936, | ||||||
| hidden_size=4096, | ||||||
| intermediate_size=12288, | ||||||
| num_hidden_layers=36, | ||||||
| num_attention_heads=32, | ||||||
| num_key_value_heads=8, | ||||||
| head_dim=128, | ||||||
| hidden_act="silu", | ||||||
| max_position_embeddings=32768, | ||||||
| initializer_range=0.02, | ||||||
| rms_norm_eps=1e-06, | ||||||
| use_cache=True, | ||||||
| tie_word_embeddings=False, | ||||||
| rope_theta=1000000.0, | ||||||
| attention_bias=False, | ||||||
| use_sliding_window=False, | ||||||
| sliding_window=None, | ||||||
| max_window_layers=36, | ||||||
| attention_dropout=0.0, | ||||||
| rope_scaling=None, | ||||||
| layer_types=None, | ||||||
| image_token_id=None, | ||||||
| video_token_id=None, | ||||||
| **kwargs, | ||||||
| ): | ||||||
| self.vocab_size = vocab_size | ||||||
| self.max_position_embeddings = max_position_embeddings | ||||||
| self.hidden_size = hidden_size | ||||||
| self.intermediate_size = intermediate_size | ||||||
| self.num_hidden_layers = num_hidden_layers | ||||||
| self.num_attention_heads = num_attention_heads | ||||||
| self.use_sliding_window = use_sliding_window | ||||||
| self.sliding_window = sliding_window | ||||||
| self.max_window_layers = max_window_layers | ||||||
|
|
||||||
| # for backward compatibility | ||||||
| if num_key_value_heads is None: | ||||||
| num_key_value_heads = num_attention_heads | ||||||
|
|
||||||
| self.num_key_value_heads = num_key_value_heads | ||||||
| self.head_dim = head_dim | ||||||
| self.hidden_act = hidden_act | ||||||
| self.initializer_range = initializer_range | ||||||
| self.rms_norm_eps = rms_norm_eps | ||||||
| self.use_cache = use_cache | ||||||
| self.rope_theta = rope_theta | ||||||
| self.attention_dropout = attention_dropout | ||||||
| self.rope_scaling = rope_scaling | ||||||
| self.attention_bias = attention_bias | ||||||
| self.tie_word_embeddings = tie_word_embeddings | ||||||
|
|
||||||
| # Validate the correctness of rotary position embeddings parameters | ||||||
| # BC: if there is a 'type' field, move it to 'rope_type'. | ||||||
| # and change type from 'mrope' to 'default' because `mrope` does default RoPE calculations | ||||||
| # one can set it to "linear"/"dynamic" etc. to have scaled RoPE | ||||||
| # TODO: @raushan update config in the hub | ||||||
| if self.rope_scaling is not None and "type" in self.rope_scaling: | ||||||
| if self.rope_scaling["type"] == "mrope": | ||||||
| self.rope_scaling["type"] = "default" | ||||||
| self.rope_scaling["rope_type"] = self.rope_scaling["type"] | ||||||
| rope_config_validation(self, ignore_keys={"mrope_section"}) | ||||||
| self.image_token_id = image_token_id | ||||||
| self.video_token_id = video_token_id | ||||||
|
|
||||||
| self.layer_types = layer_types | ||||||
| if self.layer_types is None: | ||||||
| self.layer_types = [ | ||||||
| "sliding_attention" | ||||||
| if self.sliding_window is not None and i >= self.max_window_layers | ||||||
| else "full_attention" | ||||||
| for i in range(self.num_hidden_layers) | ||||||
| ] | ||||||
| layer_type_validation(self.layer_types) | ||||||
|
|
||||||
| super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) | ||||||
|
|
||||||
|
|
||||||
| class Llavaonevision1_5Config(PretrainedConfig): | ||||||
|
||||||
| r""" | ||||||
| Args: | ||||||
| text_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `LLaVAOneVision1_5_TextConfig`): | ||||||
| The config object or dictionary of the text backbone. | ||||||
| vision_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `LLaVAOneVision1_5_VisionConfig`): | ||||||
| The config object or dictionary of the vision backbone. | ||||||
| image_token_id (`int`, *optional*, defaults to 151655): | ||||||
| The image token index to encode the image prompt. | ||||||
| video_token_id (`int`, *optional*, defaults to 151656): | ||||||
| The video token index to encode the image prompt. | ||||||
| """ | ||||||
|
|
||||||
| model_type = "llavaonevision1_5" | ||||||
|
||||||
| model_type = "llavaonevision1_5" | |
| model_type = "LLaVAOneVision1_5" |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
There's a typo in the docstring: "LLaVALLaVAOneVision1_5" should be "LLaVAOneVision1_5" (the "LLaVA" prefix is duplicated).