forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[SPARK-9910] [ML] User guide for train validation split
Author: martinzapletal <[email protected]> Closes apache#8377 from zapletal-martin/SPARK-9910.
- Loading branch information
1 parent
2a4e00c
commit e8ea5ba
Showing
3 changed files
with
287 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
90 changes: 90 additions & 0 deletions
90
examples/src/main/java/org/apache/spark/examples/ml/JavaTrainValidationSplitExample.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.examples.ml; | ||
|
||
import org.apache.spark.SparkConf; | ||
import org.apache.spark.api.java.JavaSparkContext; | ||
import org.apache.spark.ml.evaluation.RegressionEvaluator; | ||
import org.apache.spark.ml.param.ParamMap; | ||
import org.apache.spark.ml.regression.LinearRegression; | ||
import org.apache.spark.ml.tuning.*; | ||
import org.apache.spark.mllib.regression.LabeledPoint; | ||
import org.apache.spark.mllib.util.MLUtils; | ||
import org.apache.spark.sql.DataFrame; | ||
import org.apache.spark.sql.SQLContext; | ||
|
||
/** | ||
* A simple example demonstrating model selection using TrainValidationSplit. | ||
* | ||
* The example is based on {@link org.apache.spark.examples.ml.JavaSimpleParamsExample} | ||
* using linear regression. | ||
* | ||
* Run with | ||
* {{{ | ||
* bin/run-example ml.JavaTrainValidationSplitExample | ||
* }}} | ||
*/ | ||
public class JavaTrainValidationSplitExample { | ||
|
||
public static void main(String[] args) { | ||
SparkConf conf = new SparkConf().setAppName("JavaTrainValidationSplitExample"); | ||
JavaSparkContext jsc = new JavaSparkContext(conf); | ||
SQLContext jsql = new SQLContext(jsc); | ||
|
||
DataFrame data = jsql.createDataFrame( | ||
MLUtils.loadLibSVMFile(jsc.sc(), "data/mllib/sample_libsvm_data.txt"), | ||
LabeledPoint.class); | ||
|
||
// Prepare training and test data. | ||
DataFrame[] splits = data.randomSplit(new double [] {0.9, 0.1}, 12345); | ||
DataFrame training = splits[0]; | ||
DataFrame test = splits[1]; | ||
|
||
LinearRegression lr = new LinearRegression(); | ||
|
||
// We use a ParamGridBuilder to construct a grid of parameters to search over. | ||
// TrainValidationSplit will try all combinations of values and determine best model using | ||
// the evaluator. | ||
ParamMap[] paramGrid = new ParamGridBuilder() | ||
.addGrid(lr.regParam(), new double[] {0.1, 0.01}) | ||
.addGrid(lr.fitIntercept()) | ||
.addGrid(lr.elasticNetParam(), new double[] {0.0, 0.5, 1.0}) | ||
.build(); | ||
|
||
// In this case the estimator is simply the linear regression. | ||
// A TrainValidationSplit requires an Estimator, a set of Estimator ParamMaps, and an Evaluator. | ||
TrainValidationSplit trainValidationSplit = new TrainValidationSplit() | ||
.setEstimator(lr) | ||
.setEvaluator(new RegressionEvaluator()) | ||
.setEstimatorParamMaps(paramGrid); | ||
|
||
// 80% of the data will be used for training and the remaining 20% for validation. | ||
trainValidationSplit.setTrainRatio(0.8); | ||
|
||
// Run train validation split, and choose the best set of parameters. | ||
TrainValidationSplitModel model = trainValidationSplit.fit(training); | ||
|
||
// Make predictions on test data. model is the model with combination of parameters | ||
// that performed best. | ||
model.transform(test) | ||
.select("features", "label", "prediction") | ||
.show(); | ||
|
||
jsc.stop(); | ||
} | ||
} |
80 changes: 80 additions & 0 deletions
80
examples/src/main/scala/org/apache/spark/examples/ml/TrainValidationSplitExample.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.examples.ml | ||
|
||
import org.apache.spark.ml.evaluation.RegressionEvaluator | ||
import org.apache.spark.ml.regression.LinearRegression | ||
import org.apache.spark.ml.tuning.{ParamGridBuilder, TrainValidationSplit} | ||
import org.apache.spark.mllib.util.MLUtils | ||
import org.apache.spark.sql.SQLContext | ||
import org.apache.spark.{SparkConf, SparkContext} | ||
|
||
/** | ||
* A simple example demonstrating model selection using TrainValidationSplit. | ||
* | ||
* The example is based on [[SimpleParamsExample]] using linear regression. | ||
* Run with | ||
* {{{ | ||
* bin/run-example ml.TrainValidationSplitExample | ||
* }}} | ||
*/ | ||
object TrainValidationSplitExample { | ||
|
||
def main(args: Array[String]): Unit = { | ||
val conf = new SparkConf().setAppName("TrainValidationSplitExample") | ||
val sc = new SparkContext(conf) | ||
val sqlContext = new SQLContext(sc) | ||
import sqlContext.implicits._ | ||
|
||
// Prepare training and test data. | ||
val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt").toDF() | ||
val Array(training, test) = data.randomSplit(Array(0.9, 0.1), seed = 12345) | ||
|
||
val lr = new LinearRegression() | ||
|
||
// We use a ParamGridBuilder to construct a grid of parameters to search over. | ||
// TrainValidationSplit will try all combinations of values and determine best model using | ||
// the evaluator. | ||
val paramGrid = new ParamGridBuilder() | ||
.addGrid(lr.regParam, Array(0.1, 0.01)) | ||
.addGrid(lr.fitIntercept, Array(true, false)) | ||
.addGrid(lr.elasticNetParam, Array(0.0, 0.5, 1.0)) | ||
.build() | ||
|
||
// In this case the estimator is simply the linear regression. | ||
// A TrainValidationSplit requires an Estimator, a set of Estimator ParamMaps, and an Evaluator. | ||
val trainValidationSplit = new TrainValidationSplit() | ||
.setEstimator(lr) | ||
.setEvaluator(new RegressionEvaluator) | ||
.setEstimatorParamMaps(paramGrid) | ||
|
||
// 80% of the data will be used for training and the remaining 20% for validation. | ||
trainValidationSplit.setTrainRatio(0.8) | ||
|
||
// Run train validation split, and choose the best set of parameters. | ||
val model = trainValidationSplit.fit(training) | ||
|
||
// Make predictions on test data. model is the model with combination of parameters | ||
// that performed best. | ||
model.transform(test) | ||
.select("features", "label", "prediction") | ||
.show() | ||
|
||
sc.stop() | ||
} | ||
} |