forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[SPARK-9846] [DOCS] User guide for Multilayer Perceptron Classifier
Added user guide for multilayer perceptron classifier: - Simplified description of the multilayer perceptron classifier - Example code for Scala and Java Author: Alexander Ulanov <[email protected]> Closes apache#8262 from avulanov/SPARK-9846-mlpc-docs.
- Loading branch information
Showing
2 changed files
with
124 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
--- | ||
layout: global | ||
title: Multilayer perceptron classifier - ML | ||
displayTitle: <a href="ml-guide.html">ML</a> - Multilayer perceptron classifier | ||
--- | ||
|
||
|
||
`\[ | ||
\newcommand{\R}{\mathbb{R}} | ||
\newcommand{\E}{\mathbb{E}} | ||
\newcommand{\x}{\mathbf{x}} | ||
\newcommand{\y}{\mathbf{y}} | ||
\newcommand{\wv}{\mathbf{w}} | ||
\newcommand{\av}{\mathbf{\alpha}} | ||
\newcommand{\bv}{\mathbf{b}} | ||
\newcommand{\N}{\mathbb{N}} | ||
\newcommand{\id}{\mathbf{I}} | ||
\newcommand{\ind}{\mathbf{1}} | ||
\newcommand{\0}{\mathbf{0}} | ||
\newcommand{\unit}{\mathbf{e}} | ||
\newcommand{\one}{\mathbf{1}} | ||
\newcommand{\zero}{\mathbf{0}} | ||
\]` | ||
|
||
|
||
Multilayer perceptron classifier (MLPC) is a classifier based on the [feedforward artificial neural network](https://en.wikipedia.org/wiki/Feedforward_neural_network). | ||
MLPC consists of multiple layers of nodes. | ||
Each layer is fully connected to the next layer in the network. Nodes in the input layer represent the input data. All other nodes maps inputs to the outputs | ||
by performing linear combination of the inputs with the node's weights `$\wv$` and bias `$\bv$` and applying an activation function. | ||
It can be written in matrix form for MLPC with `$K+1$` layers as follows: | ||
`\[ | ||
\mathrm{y}(\x) = \mathrm{f_K}(...\mathrm{f_2}(\wv_2^T\mathrm{f_1}(\wv_1^T \x+b_1)+b_2)...+b_K) | ||
\]` | ||
Nodes in intermediate layers use sigmoid (logistic) function: | ||
`\[ | ||
\mathrm{f}(z_i) = \frac{1}{1 + e^{-z_i}} | ||
\]` | ||
Nodes in the output layer use softmax function: | ||
`\[ | ||
\mathrm{f}(z_i) = \frac{e^{z_i}}{\sum_{k=1}^N e^{z_k}} | ||
\]` | ||
The number of nodes `$N$` in the output layer corresponds to the number of classes. | ||
|
||
MLPC employes backpropagation for learning the model. We use logistic loss function for optimization and L-BFGS as optimization routine. | ||
|
||
**Examples** | ||
|
||
<div class="codetabs"> | ||
|
||
<div data-lang="scala" markdown="1"> | ||
|
||
{% highlight scala %} | ||
import org.apache.spark.ml.classification.MultilayerPerceptronClassifier | ||
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator | ||
import org.apache.spark.mllib.util.MLUtils | ||
import org.apache.spark.sql.Row | ||
|
||
// Load training data | ||
val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_multiclass_classification_data.txt").toDF() | ||
// Split the data into train and test | ||
val splits = data.randomSplit(Array(0.6, 0.4), seed = 1234L) | ||
val train = splits(0) | ||
val test = splits(1) | ||
// specify layers for the neural network: | ||
// input layer of size 4 (features), two intermediate of size 5 and 4 and output of size 3 (classes) | ||
val layers = Array[Int](4, 5, 4, 3) | ||
// create the trainer and set its parameters | ||
val trainer = new MultilayerPerceptronClassifier() | ||
.setLayers(layers) | ||
.setBlockSize(128) | ||
.setSeed(1234L) | ||
.setMaxIter(100) | ||
// train the model | ||
val model = trainer.fit(train) | ||
// compute precision on the test set | ||
val result = model.transform(test) | ||
val predictionAndLabels = result.select("prediction", "label") | ||
val evaluator = new MulticlassClassificationEvaluator() | ||
.setMetricName("precision") | ||
println("Precision:" + evaluator.evaluate(predictionAndLabels)) | ||
{% endhighlight %} | ||
|
||
</div> | ||
|
||
<div data-lang="java" markdown="1"> | ||
|
||
{% highlight java %} | ||
import org.apache.spark.api.java.JavaRDD; | ||
import org.apache.spark.ml.classification.MultilayerPerceptronClassificationModel; | ||
import org.apache.spark.ml.classification.MultilayerPerceptronClassifier; | ||
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator; | ||
import org.apache.spark.mllib.regression.LabeledPoint; | ||
import org.apache.spark.mllib.util.MLUtils; | ||
|
||
// Load training data | ||
String path = "data/mllib/sample_multiclass_classification_data.txt"; | ||
JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(sc, path).toJavaRDD(); | ||
DataFrame dataFrame = sqlContext.createDataFrame(data, LabeledPoint.class); | ||
// Split the data into train and test | ||
DataFrame[] splits = dataFrame.randomSplit(new double[]{0.6, 0.4}, 1234L); | ||
DataFrame train = splits[0]; | ||
DataFrame test = splits[1]; | ||
// specify layers for the neural network: | ||
// input layer of size 4 (features), two intermediate of size 5 and 4 and output of size 3 (classes) | ||
int[] layers = new int[] {4, 5, 4, 3}; | ||
// create the trainer and set its parameters | ||
MultilayerPerceptronClassifier trainer = new MultilayerPerceptronClassifier() | ||
.setLayers(layers) | ||
.setBlockSize(128) | ||
.setSeed(1234L) | ||
.setMaxIter(100); | ||
// train the model | ||
MultilayerPerceptronClassificationModel model = trainer.fit(train); | ||
// compute precision on the test set | ||
DataFrame result = model.transform(test); | ||
DataFrame predictionAndLabels = result.select("prediction", "label"); | ||
MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator() | ||
.setMetricName("precision"); | ||
System.out.println("Precision = " + evaluator.evaluate(predictionAndLabels)); | ||
{% endhighlight %} | ||
</div> | ||
|
||
</div> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters